论文标题
在圆锥形曲线上,与无限类型的真实超曲面相切
On holomorphic curves tangent to real hypersurfaces of infinite type
论文作者
论文摘要
本文的目的是研究$ {\ Mathbb c}^n $的D'Angelo Infinite类型的实际超曲面的几何特性。为了理解这些超曲面的平坦度,自然要问是否存在与给定超表面无限顺序相切的非恒定全体形态曲线。使用牛顿多面体给出了足够的条件,这是奇异理论中的重要概念。更确切地说,在某些模型超曲面的情况下给出了等效条件。
The purpose of this paper is to investigate the geometric properties of real hypersurfaces of D'Angelo infinite type in ${\mathbb C}^n$. In order to understand the situation of flatness of these hypersurfaces, it is natural to ask whether there exists a nonconstant holomorphic curve tangent to a given hypersurface to infinite order. A sufficient condition for this existence is given by using Newton polyhedra,which is an important concept in singularity theory. More precisely,equivalence conditions are given in the case of some model hypersurfaces.