论文标题

在带有红外光的蜂窝双层中直接驾驶电子和声音自由度

Direct driving of electronic and phononic degrees of freedom in a honeycomb bilayer with infrared light

论文作者

Rodriguez-Vega, Martin, Vogl, Michael, Fiete, Gregory A.

论文摘要

我们研究了由光线在紧密结合描述中与红外声子共鸣的理论上堆积的蜂窝双层。我们用小组理论表征了蜂窝双层的声子特性,并在与红外声子共鸣之后为系统构建了电子依赖时间的紧密结合模型。我们采用了一个“原子绝热”的近似,由Mohantya和Heller PNAS 116,18316(2019)引入,以描述经典的振动核,但获得了与时间依赖模型相关的Floquet Quasienergy频谱。我们介绍了一个通用方案,以解开复杂的低频浮光光谱,以阐明相关的浮球频带。作为一个典型的例子,我们考虑双层石墨烯。我们发现,与k点附近的准频谱中的频谱中的光线相比,与Born-Oppenheimer近似值和高频态度相反,在k点附近的拟光谱中的光线也可以诱导带隙。最后,我们分析了驱动电子和驱动的声子过程的绝热性,并在相同的驱动频率下发现对自相关函数的对比影响:驱动的声子保留了初始状态的特征,而驱动的电子在几个驱动周期内表现出强偏差。此处概述的过程可以应用于其他材料,以描述低频光对声子和电子的综合作用。

We study theoretically AB-stacked honeycomb bilayers driven by light in resonance with an infrared phonon within a tight-binding description. We characterize the phonon properties of honeycomb bilayers with group theory and construct an electronic time-dependent tight-binding model for the system following photo-excitation in resonance with an infrared phonon. We adopt an "atomically adiabatic" approximation, introduced by Mohantya and Heller PNAS 116, 18316 (2019) to describe classically vibrating nuclei, but obtain the Floquet quasienergy spectrum associated with the time-dependent model exactly. We introduce a general scheme to disentangle the complex low-frequency Floquet spectrum to elucidate the relevant Floquet bands. As a prototypical example, we consider bilayer graphene. We find that light in the low-frequency regime can induce a bandgap in the quasienergy spectrum in the vicinity of the K points even if it is linearly polarized, in contrast with the expectations within the Born-Oppenheimer approximation and the high-frequency regime. Finally, we analyze the diabaticity of the driven electron and driven phonon processes and found contrasting effects on the autocorrelation functions at the same driving frequency: driven phonons preserve the character of the initial state while driven electrons exhibit strong deviations within a few drive cycles. The procedure outlined here can be applied to other materials to describe the combined effects of low-frequency light on phonons and electrons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源