论文标题
循环四边形和光滑的约旦曲线
Cyclic quadrilaterals and smooth Jordan curves
论文作者
论文摘要
对于欧几里得飞机中的每条光滑的Jordan Curve $γ$和环状四边形$ Q $,我们表明存在一个方向提供相似性,以$ Q $至$γ$的顶点。证据依赖于Polterovich和Viterbo的定理表明,嵌入式Lagrangian圆环在$ \ Mathbb {C}^2 $中具有最低MASLOV编号2。
For every smooth Jordan curve $γ$ and cyclic quadrilateral $Q$ in the Euclidean plane, we show that there exists an orientation-preserving similarity taking the vertices of $Q$ to $γ$. The proof relies on the theorem of Polterovich and Viterbo that an embedded Lagrangian torus in $\mathbb{C}^2$ has minimum Maslov number 2.