论文标题

银河流出中的冲击 - 媒体相互作用-II。辐射分形云和冷气热力学

Shock-multicloud interactions in galactic outflows -- II. Radiative fractal clouds and cold gas thermodynamics

论文作者

Banda-Barragán, Wladimir, Brüggen, Marcus, Heesen, Volker, Scannapieco, Evan, Cottle, J'Neil, Federrath, Christoph, Wagner, Alexander Y.

论文摘要

银河风对于物质的宇宙循环至关重要,将材料从星系的致密区域传递出来。观察结果表明,这种风中不同温度阶段的共存,这并不容易解释。我们提出了一组3D冲击 - 模拟模拟,该模拟在$ 10^2 \,\ rm k $和$ 10^7 \,\ rm k $的温度下解释了辐射加热和冷却。冲击加热,动力学不稳定性,湍流和辐射加热和冷却之间的相互作用产生了具有雨水形态的复杂多相流。云气体碎片并不断侵蚀,变得有效混合和质量负荷。然后,所得温暖的混合气体冷却并沉淀成新的致密云层,并重复该过程。因此,辐射冷却能够通过帮助温暖的云层和热风的气体凝结来维持快速移动的气体。在随后的流出中,温度为$ \ gtrsim 10^6 \,\ rm k $的热气体分别达到温暖和冷的阶段,它们在$ \ $ \ of 10^4 \,\ rm k $和$ \ rm k $和$ \ 10^2 \,大约10^2 \,\ rm k $中分别达到热平衡。尽管流出气体的体积填充因子较高,但大多数质量都集中在密集的气云和细丝中,并具有这些温度。更多的多孔多云层会导致更垂直扩展的流出,并且在更紧凑的层中更有效地生产了密集的气体。冷相并非被RAM压力加速,而是从热平衡中从温暖和混合的气体中沉淀出来。这个周期可以解释具有$ n _ {\ rm h \,{\ rm h \,{\ scriptStyle i}} = 10^{19-21} \,\ rm cm cm cm^{ - 2} $和$ um fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm fwhm银河中心流出中的km \,s^{ - 1} $。

Galactic winds are crucial to the cosmic cycle of matter, transporting material out of the dense regions of galaxies. Observations show the coexistence of different temperature phases in such winds, which is not easy to explain. We present a set of 3D shock-multicloud simulations that account for radiative heating and cooling at temperatures between $10^2\,\rm K$ and $10^7\,\rm K$. The interplay between shock heating, dynamical instabilities, turbulence, and radiative heating and cooling creates a complex multi-phase flow with a rain-like morphology. Cloud gas fragments and is continuously eroded, becoming efficiently mixed and mass loaded. The resulting warm mixed gas then cools down and precipitates into new dense cloudlets, which repeat the process. Thus, radiative cooling is able to sustain fast-moving dense gas by aiding condensation of gas from warm clouds and the hot wind. In the ensuing outflow, hot gas with temperatures $\gtrsim 10^6\,\rm K$ outruns the warm and cold phases, which reach thermal equilibrium near $\approx 10^4\,\rm K$ and $\approx 10^2\,\rm K$, respectively. Although the volume filling factor of hot gas is higher in the outflow, most of the mass is concentrated in dense gas cloudlets and filaments with these temperatures. More porous multicloud layers result in more vertically extended outflows, and dense gas is more efficiently produced in more compact layers. The cold phase is not accelerated by ram-pressure, but, instead, precipitates from warm and mixed gas out of thermal equilibrium. This cycle can explain the presence of high-velocity H\,{\sc i} gas with $N_{\rm H\,{\scriptstyle I}}=10^{19-21}\,\rm cm^{-2}$ and $Δv_{\rm FWHM}\lesssim37\,\rm km\,s^{-1}$ in the Galactic centre outflow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源