论文标题
无标签的拉曼光谱和机器学习可以对免疫疗法的差异反应进行敏感评估
Label-free Raman spectroscopy and machine learning enables sensitive evaluation of differential response to immunotherapy
论文作者
论文摘要
癌症免疫疗法仅在一小部分患者中可提供持久的临床益处,尤其是由于缺乏可靠的生物标志物来准确预测治疗结果和评估反应。在这里,我们证明了无标记的拉曼光谱法在肿瘤微环境中免疫疗法引起的生化变化是首次应用。我们使用CT26鼠结直肠癌细胞来生长肿瘤异种移植物,并用抗CTLA-4和抗PD-L1抗体进行治疗。多变量曲线分辨率 - 从处理和对照肿瘤获得的拉曼光谱数据集的交替平方(MCR -ALS)分解显示,由于治疗而导致的脂质,核酸和胶原蛋白含量的细微差异。我们使用支持向量机和随机森林的监督分类分析为免疫检查点抑制剂提供了出色的预测准确性,并描绘了每种疗法特定的重要光谱标记,这与它们的作用差异机制一致。我们的发现铺平了使用无标签的拉曼光谱和机器学习的临床患者中对免疫疗法反应的体内研究的道路。
Cancer immunotherapy provides durable clinical benefit in only a small fraction of patients, particularly due to a lack of reliable biomarkers for accurate prediction of treatment outcomes and evaluation of response. Here, we demonstrate the first application of label-free Raman spectroscopy for elucidating biochemical changes induced by immunotherapy in the tumor microenvironment. We used CT26 murine colorectal cancer cells to grow tumor xenografts and subjected them to treatment with anti-CTLA-4 and anti-PD-L1 antibodies. Multivariate curve resolution - alternating least squares (MCR-ALS) decomposition of Raman spectral dataset obtained from the treated and control tumors revealed subtle differences in lipid, nucleic acid, and collagen content due to therapy. Our supervised classification analysis using support vector machines and random forests provided excellent prediction accuracies for both immune checkpoint inhibitors and delineated important spectral markers specific to each therapy, consistent with their differential mechanisms of action. Our findings pave the way for in vivo studies of response to immunotherapy in clinical patients using label-free Raman spectroscopy and machine learning.