论文标题
量子不变的传播器和量子电动力学的状态
Gauge Invariant Propagators and States in Quantum Electrodynamics
论文作者
论文摘要
我们研究了QED中的规格不变状态,在该状态下,该状态是根据规范不变路径积分界限的数据来理解的。这是针对标量和旋转QED的,以及时间切片或“因果钻石”的边界的边界。我们讨论了仪表场在边界处下降到零的情况,也是“大型仪表转换”的情况,在边界处的情况保持有限。使用量规不变的传播器讨论了动力学,描述了边界之间的粒子和场的运动。我们演示了该路径综合性如何自然产生“库仑场”的敷料因子,以使居住在时间分段的状态下,以及如何在不固定任何规格的情况下完成此操作。我们表明,敷料的形式仅取决于边界的性质。我们还得出了定义在零无穷大的状态的类似调味料,显示了其库仑的零件和软光子零件。
We study gauge invariant states in QED, where states are understood in terms of data living on the boundary of gauge invariant path-integrals. This is done for both scalar and spinor QED, and for boundaries that are either time slices, or the boundaries of a 'causal diamond'. We discuss both the case where the gauge field falls off to zero at the boundaries, and the case of 'large gauge transformations', where it remains finite at the boundaries. The dynamics are discussed using the gauge-invariant propagator, describing motion of both the particles and the field between the boundaries. We demonstrate how the path-integral naturally generates a 'Coulomb-field' dressing factor for states living on time-slices, and how this is done without fixing any gauge. We show that the form of the dressing depends only on the nature of the boundaries. We also derive the analogous dressing for states defined on null infinity, showing both its Coulombic parts as well as soft-photon parts.