论文标题
在第二个Ligo中的分层黑洞合并的证据 - Virgo重力波目录
Evidence for hierarchical black hole mergers in the second LIGO--Virgo gravitational-wave catalog
论文作者
论文摘要
我们研究了第二种Ligo - Virgo引力波瞬态目录中合并二元黑洞的种群特性,假设它们都是在重力结合的簇中动态形成的。使用现象学人群模型,我们推断第一代黑洞的质量和自旋分布,同时自愿考虑分层合并。考虑到一系列群集质量,我们看到具有逃逸速度的集群中的层次合并的令人信服的证据,$ \ gtrsim 100〜 \ mathrm {km \,s^{ - 1}} $。对于我们最可能的群集质量,我们发现目录包含至少一秒钟的合并,并以$ 99 \%$的信誉。我们发现,分层模型比没有层次合并的替代模型(贝叶斯因子$ \ Mathcal {b}> 1400 $)优先,并且GW190521被偏爱包含两个第二代黑洞,具有$ \ \ \ \ \ Mathcal {o}> 700 $,及GW190519060606060606060, GW190706是$ \ Mathcal {O}> 10 $的混合生成二进制文件。但是,我们的结果在很大程度上取决于群集逃生速度,当逃逸速度为$ \ sillsim 100〜 \ mathrm {km \,s^{ - 1}} $时,具有更少的层次合并证据。假设所有二进制黑洞都是在球状簇中动态形成的,其逃逸速度的数量达到了$ \ mathrm {km \,s^{ - 1}} $,gw190519和gw190521和gw190521的第二基因黑洞$ \ m m natercal can} cy} cy}。在这种情况下,我们发现来自推断总人口的$ 99 \%$的黑洞的质量小于$ 49 \,m _ {\ odot} $,并且此约束对于我们在最大黑洞质量上的先验选择是可靠的。
We study the population properties of merging binary black holes in the second LIGO--Virgo Gravitational-Wave Transient Catalog assuming they were all formed dynamically in gravitationally bound clusters. Using a phenomenological population model, we infer the mass and spin distribution of first-generation black holes, while self-consistently accounting for hierarchical mergers. Considering a range of cluster masses, we see compelling evidence for hierarchical mergers in clusters with escape velocities $\gtrsim 100~\mathrm{km\,s^{-1}}$. For our most probable cluster mass, we find that the catalog contains at least one second-generation merger with $99\%$ credibility. We find that the hierarchical model is preferred over an alternative model with no hierarchical mergers (Bayes factor $\mathcal{B} > 1400$) and that GW190521 is favored to contain two second-generation black holes with odds $\mathcal{O}>700$, and GW190519, GW190602, GW190620, and GW190706 are mixed-generation binaries with $\mathcal{O} > 10$. However, our results depend strongly on the cluster escape velocity, with more modest evidence for hierarchical mergers when the escape velocity is $\lesssim 100~\mathrm{km\,s^{-1}}$. Assuming that all binary black holes are formed dynamically in globular clusters with escape velocities on the order of tens of $\mathrm{km\,s^{-1}}$, GW190519 and GW190521 are favored to include a second-generation black hole with odds $\mathcal{O}>1$. In this case, we find that $99\%$ of black holes from the inferred total population have masses that are less than $49\,M_{\odot}$, and that this constraint is robust to our choice of prior on the maximum black hole mass.