论文标题
一般线性组的组合翻译原理和图表组合
A combinatorial translation principle and diagram combinatorics for the general linear group
论文作者
论文摘要
令k为特征p> 0的代数封闭场。我们在不可分解的倾斜模块中计算WEYL过滤多重性,以及在k上的一般线性基团的分解数,在盖上图表上,假设P大于所涉及的分区中最大的挂钩长度。然后,我们介绍并研究了从一类GL_N模块的理性Schur函数到围墙Brauer代数的模块类别。作为推论,当P大于所涉及的分区中最大的挂钩长度时,我们获得了围墙Brauer代数的分解数。这是关于符号组和Brauer代数的早期论文的续集。
Let k be an algebraically closed field of characteristic p>0. We compute the Weyl filtration multiplicities in indecomposable tilting modules and the decomposition numbers for the general linear group over k in terms of cap diagrams under the assumption that p is bigger than the greatest hook length in the partitions involved. Then we introduce and study the rational Schur functor from a category of GL_n-modules to the category of modules for the walled Brauer algebra. As a corollary we obtain the decomposition numbers for the walled Brauer algebra when p is bigger than the greatest hook length in the partitions involved. This is a sequel to an earlier paper on the symplectic group and the Brauer algebra.