论文标题

通过背景介绍的自我监督分割

Self-supervised Segmentation via Background Inpainting

论文作者

Katircioglu, Isinsu, Rhodin, Helge, Constantin, Victor, Spörri, Jörg, Salzmann, Mathieu, Fua, Pascal

论文摘要

尽管有监督的对象检测和分割方法达到了令人印象深刻的准确性,但它们的外观与已经训练的数据明显不同,它们的外观明显不同。为了解决这一问题,注释数据非常昂贵,我们引入了一种自我监管的检测和细分方法,该方法可以与潜在移动的摄像机捕获的单个图像一起使用。我们方法的核心是观察到的观察,即对象分割和背景重建是链接的任务,对于结构化的场景,可以从周围环境中重新合成背景区域,而描述移动对象的区域则不能。我们将此直觉编码为一个自我监督的损失函数,我们利用该功能来培训基于建议的分割网络。为了说明提案的离散性质,我们制定了一种基于蒙特卡洛的培训策略,该策略允许算法探索对象建议的庞大空间。我们将我们的方法应用于人类检测和分割,这些图像与标准基准的图像相偏离,并且表现优于现有的自我监督方法。

While supervised object detection and segmentation methods achieve impressive accuracy, they generalize poorly to images whose appearance significantly differs from the data they have been trained on. To address this when annotating data is prohibitively expensive, we introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera. At the heart of our approach lies the observation that object segmentation and background reconstruction are linked tasks, and that, for structured scenes, background regions can be re-synthesized from their surroundings, whereas regions depicting the moving object cannot. We encode this intuition into a self-supervised loss function that we exploit to train a proposal-based segmentation network. To account for the discrete nature of the proposals, we develop a Monte Carlo-based training strategy that allows the algorithm to explore the large space of object proposals. We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源