论文标题
在$ c^0 $ - 分销混乱的基因
On $C^0$-genericity of distributional chaos
论文作者
论文摘要
令$ m $为没有边界的紧凑型光滑歧管。根据Good and Meddaugh(2020)的结果,我们证明,在连续的自动图(同构同构)$ M $的空间中,强大的分销混乱为$ C^0 $ Generic。结果包含了Li等人的问题答案。 (2016)和Moothathu(2011)在零维情况下。还给出了阴影下链组件上的相关反示例。
Let $M$ be a compact smooth manifold without boundary. Based on results by Good and Meddaugh (2020), we prove that a strong distributional chaos is $C^0$-generic in the space of continuous self-maps (resp. homeomorphisms) of $M$. The results contain answers to questions by Li et al. (2016) and Moothathu (2011) in the zero-dimensional case. A related counter-example on the chain components under shadowing is also given.