论文标题
卡利(Cayley
Some properties of Cayley signed graphs on finite abelian groups
论文作者
论文摘要
让$σ=(γ,σ)$是签名的图(或简称Sigraph),其中$γ$是$σ$和$σ的基础图:考虑$γ= cay(\ Mathbb {z} _ {p_ {p_ {1}} \ times \ mathbb {z} _ {p_ {p_ {1}^{α_{1}}} φ)$,其中所有$ p_ {1},p_ {2},\ ldots,p_ {k} $都是不同的素数因素,$φ=φ__{p_ {1}}} \timesφ__{p_ {p_ {p_ {1}^{α_{α_{1}} p_ {k}^{α_{k}}} $。对于任何正整数$ n $,$φ_{n} = \ {\ ell | 1 \ leq \ ell <n,\ gcd(\ ell,n)= 1 \} $。由\ cite {s14}激励,我们将调查$σ$和$ l(σ)$,clusterable和$σ$的标志兼容性的平衡。
Let $Σ=(Γ, σ)$ is a signed graph(or sigraph in short), where $Γ$ is a underlying graph of $Σ$ and $σ:E\longrightarrow \{+, -\}$ is a function. Consider $Γ=Cay(\mathbb{Z}_{p_{1}}\times \mathbb{Z}_{p_{1}^{α_{1}}p_{2}^{α_{2}} \ldots p_{k}^{α_{k}}}, Φ)$, where all $p_{1}, p_{2}, \ldots, p_{k}$ are distinct prime factors and $Φ=φ_{p_{1}}\timesφ_{p_{1}^{α_{1}}p_{2}^{α_{2}} \ldots p_{k}^{α_{k}}}$. For any positive integer $n$, $φ_{n}=\{\ell| 1\leq \ell<n, \gcd(\ell, n)=1\}$. Motivated by \cite{s14}, we will investigate balancing in $Σ$ and $L(Σ)$, clusterability and sign-compatibility of $Σ$.