论文标题
$ 3 $ - manifolds的表面同置运动
Homotopy motions of surfaces in $3$-manifolds
论文作者
论文摘要
我们介绍了子集在歧管中的同质运动的概念,并对封闭的可定位3个模型中表面的同型运动进行了系统的研究。这个概念源于三个序列理论中的各种自然问题,例如歧管对的统治,在heegaard表面上的简单环的同位行为以及虚拟分支覆盖与Heegaard拆分相关的表面捆绑包的单层。
We introduce the concept of a homotopy motion of a subset in a manifold, and give a systematic study of homotopy motions of surfaces in closed orientable 3-manifolds. This notion arises from various natural problems in 3-manifold theory such as domination of manifold pairs, homotopical behavior of simple loops on a Heegaard surface, and monodromies of virtual branched covering surface bundles associated to a Heegaard splitting.