论文标题

通过前馈神经网络快速半决赛编程

Fast semidefinite programming with feedforward neural networks

论文作者

Kriváchy, Tamás, Cai, Yu, Bowles, Joseph, Cavalcanti, Daniel, Brunner, Nicolas

论文摘要

半决赛编程是一项重要的优化任务,通常用于时间敏感的应用程序。尽管它们可以在多项式时间内解决,但实际上它们可能太慢,无法在线使用,即实时应用程序。在这里,我们建议使用人工神经网络解决可行性半决赛程序。给定优化约束作为输入,神经网络为优化参数输出值,以便满足任务的原始和双重公式的约束。我们训练网络而无需精确地解决半决赛程序,从而避免了可能耗时的任务,即必须使用常规求解器生成许多培训样本。神经网络方法仅在原始模型和双重模型都无法提供可行的解决方案时才定论。否则,我们始终获得证书,该证书保证误报被排除在外。我们检查了该方法在量子信息任务的层次结构上的性能,纳法斯·佩里奥·阿西恩(Navascués-Pironio-Acín)的层次结构应用于铃铛方案。我们证明了训练有素的神经网络具有不错的精度,同时与传统求解器相比,速度的数量级增加。

Semidefinite programming is an important optimization task, often used in time-sensitive applications. Though they are solvable in polynomial time, in practice they can be too slow to be used in online, i.e. real-time applications. Here we propose to solve feasibility semidefinite programs using artificial neural networks. Given the optimization constraints as an input, a neural network outputs values for the optimization parameters such that the constraints are satisfied, both for the primal and the dual formulations of the task. We train the network without having to exactly solve the semidefinite program even once, thus avoiding the possibly time-consuming task of having to generate many training samples with conventional solvers. The neural network method is only inconclusive if both the primal and dual models fail to provide feasible solutions. Otherwise we always obtain a certificate, which guarantees false positives to be excluded. We examine the performance of the method on a hierarchy of quantum information tasks, the Navascués-Pironio-Acín hierarchy applied to the Bell scenario. We demonstrate that the trained neural network gives decent accuracy, while showing orders of magnitude increase in speed compared to a traditional solver.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源