论文标题
揭示了具有自组织地图的Lofar两米高的Sky Reverion源人群的最稀有的形态
Unveiling the rarest morphologies of the LOFAR Two-metre Sky Survey radio source population with self-organised maps
论文作者
论文摘要
低频阵列(Lofar)两米的天空调查(Lots)是对北方天空的低频无线电连续性调查,并以无与伦比的分辨率和灵敏度为单位。为了充分利用这个巨大的数据集以及未来十年的平方公里阵列生产的数据集,机器学习和数据挖掘中的自动化方法对于形态学分类和识别无线电源的光学对应物将越来越重要。使用自组织图(SOMS),一种无监督的机器学习形式,我们在Lots First Data Reapraine中为$ \ sim $ 25K $ 25K扩展无线电连续源创建了无线电形态的维度,这仅是$ \ sim $ \ sim $ 2%的最终地段调查中的2%。我们使用\ textsc {pink},该代码通过旋转和翻转不变性扩展了SOM算法,从而提高了其对天文来源训练的适用性和有效性。训练后,SOM可以用于广泛的科学剥削,我们通过在我们的训练数据(424平方度)中找到任意数量的形态上罕见来源,然后在天空区域($ \ sim $ \ sim $ 5300平方度)中提出了它们的潜力。以这种方式发现的物体跨越了多种形态和物理类别:无线电的活跃银河核的扩展喷射,弥漫性簇光环和文物以及附近的螺旋星系。最后,为了启用可访问,交互式和直观的数据探索,我们展示了Lofar-Pybdsf可视化工具,该工具允许用户通过训练有素的SOM探索Lots数据集。
The Low Frequency Array (LOFAR) Two-metre Sky Survey (LoTSS) is a low-frequency radio continuum survey of the Northern sky at an unparalleled resolution and sensitivity. In order to fully exploit this huge dataset and those produced by the Square Kilometre Array in the next decade, automated methods in machine learning and data-mining will be increasingly essential both for morphological classifications and for identifying optical counterparts to the radio sources. Using self-organising maps (SOMs), a form of unsupervised machine learning, we created a dimensionality reduction of the radio morphologies for the $\sim$25k extended radio continuum sources in the LoTSS first data release, which is only $\sim$2 percent of the final LoTSS survey. We made use of \textsc{PINK}, a code which extends the SOM algorithm with rotation and flipping invariance, increasing its suitability and effectiveness for training on astronomical sources. After training, the SOMs can be used for a wide range of science exploitation and we present an illustration of their potential by finding an arbitrary number of morphologically rare sources in our training data (424 square degrees) and subsequently in an area of the sky ($\sim$5300 square degrees) outside the training data. Objects found in this way span a wide range of morphological and physical categories: extended jets of radio active galactic nuclei, diffuse cluster haloes and relics, and nearby spiral galaxies. Finally, to enable accessible, interactive, and intuitive data exploration, we showcase the LOFAR-PyBDSF Visualisation Tool, which allows users to explore the LoTSS dataset through the trained SOMs.