论文标题
等光谱旋转和量子混乱
Isospectral twirling and quantum chaos
论文作者
论文摘要
我们表明,量子混乱的最重要度量(例如框架电势,争夺,Loschmidt Echo)和超级订单相关器(OTOC)可以通过异光度旋转的统一框架来描述,即HAAR平均值的$ K $单位通道。我们表明,这样的措施可以始终以同感旋转的期望值形式施放。在文献中,有时会通过频谱和其他时间通过汉密尔顿的特征向量来研究量子混乱,从而产生动力学。我们表明,通过利用随机矩阵理论,这些量子混乱的度量清楚地将探针的有限时间曲线与与高斯单位合奏(GUE)相对应的量子混乱与Poisson分布和高斯二分基团(GDE)(GDE)所给出的混乱相对应。另一方面,我们表明渐近值确实取决于哈密顿量的特征向量。我们看到,与特征向量稳定剂状态的哈密顿人的同一旋转不具有混乱的特征,这与那些从HAAR措施中获取特征向量的汉密尔顿人不同。例如,与通用资源相比,Clifford Resources腐烂到更高的值获得的OTOC。最后,我们在一类可集成模型和量子混乱之间的OTOC行为中显示了一个交叉。
We show that the most important measures of quantum chaos like frame potentials, scrambling, Loschmidt echo, and out-of-time-order correlators (OTOCs) can be described by the unified framework of the isospectral twirling, namely the Haar average of a $k$-fold unitary channel. We show that such measures can then be always cast in the form of an expectation value of the isospectral twirling. In literature, quantum chaos is investigated sometimes through the spectrum and some other times through the eigenvectors of the Hamiltonian generating the dynamics. We show that, by exploiting random matrix theory, these measures of quantum chaos clearly distinguish the finite time profiles of probes to quantum chaos corresponding to chaotic spectra given by the Gaussian Unitary Ensemble (GUE) from the integrable spectra given by Poisson distribution and the Gaussian Diagonal Ensemble (GDE). On the other hand, we show that the asymptotic values do depend on the eigenvectors of the Hamiltonian. We see that the isospectral twirling of Hamiltonians with eigenvectors stabilizer states does not possess chaotic features, unlike those Hamiltonians whose eigenvectors are taken from the Haar measure. As an example, OTOCs obtained with Clifford resources decay to higher values compared with universal resources. Finally, we show a crossover in the OTOC behavior between a class of integrable models and quantum chaos.