论文标题
图表中变化点和异常检测的统计学习
Statistical learning for change point and anomaly detection in graphs
论文作者
论文摘要
可以以静态图和动态图的形式表示的复杂系统在不同的字段中出现,例如沟通,工程和行业。分析动态网络结构的有趣问题之一是监视其开发的变化。统计学习涵盖了基于人工智能和传统统计的两种方法,可用于在该研究领域进行进展。但是,大多数方法仅应用一个或另一个框架。在本文中,我们讨论了将这两个学科汇总在一起的可能性,以创建重点介绍统计过程控制和深度学习算法的示例的增强网络监视程序。加上网络数据中的变更点和异常检测的介绍,我们建议监视救护车服务的响应时间,共同应用控制图的分位数函数值和图形卷积网络。
Complex systems which can be represented in the form of static and dynamic graphs arise in different fields, e.g. communication, engineering and industry. One of the interesting problems in analysing dynamic network structures is to monitor changes in their development. Statistical learning, which encompasses both methods based on artificial intelligence and traditional statistics, can be used to progress in this research area. However, the majority of approaches apply only one or the other framework. In this paper, we discuss the possibility of bringing together both disciplines in order to create enhanced network monitoring procedures focussing on the example of combining statistical process control and deep learning algorithms. Together with the presentation of change point and anomaly detection in network data, we propose to monitor the response times of ambulance services, applying jointly the control chart for quantile function values and a graph convolutional network.