论文标题

使用Q学习的分布式自适应和弹性控制具有有限的视野相互作用的多机器人系统

Distributed Adaptive and Resilient Control of Multi-Robot Systems with Limited Field of View Interactions using Q-Learning

论文作者

Mukherjee, Pratik, Santilli, Matteo, Gasparri, Andrea, Williams, Ryan K.

论文摘要

在本文中,我们考虑了在潜在的基于控制设计框架下动态调整多机器人系统(MRS)的问题,其中MRS团队坐标可以保持连接的拓扑,同时配备有限的视野传感器。应用基于潜在的控制框架和假设机器人相互作用是由三角形几何形状编码的,我们得出了分布式控制定律,以实现拓扑控制目标。在分布式网络中基于潜在控制的典型缺点是,整体系统行为对增益高度敏感。为了克服这一限制,我们提出了一个分布式和自适应增益控制器,该控制器保留了设计的成对相互作用强度,而与网络大小无关。在此上,我们实施了一种控制方案,使MRS能够抵抗对MRS中机器人的机器人传感器或执行器的外源攻击。在这方面,我们对添加剂传感器和执行器断层进行建模,这些传感器和执行器断层是在外部引起的,以使MRS Unclable造成。但是,通过使用静态输出反馈设计技术来应用$ h _ {\ infty} $控制协议,可确保有限的$ l_2 $ l_2 $ r_2 $ a f造成的错误和执行器故障信号。最后,我们将基于策略迭代的Q学习应用于离散时间MRS的自适应增长。提供仿真结果以支持理论发现。

In this paper, we consider the problem of dynamically tuning gains for multi-robot systems (MRS) under potential based control design framework where the MRS team coordinates to maintain a connected topology while equipped with limited field of view sensors. Applying the potential-based control framework and assuming robot interaction is encoded by a triangular geometry, we derive a distributed control law in order to achieve the topology control objective. A typical shortcoming of potential-based control in distributed networks is that the overall system behavior is highly sensitive to gain-tuning. To overcome this limitation, we propose a distributed and adaptive gain controller that preserves a designed pairwise interaction strength, independent of the network size. Over that, we implement a control scheme that enables the MRS to be resilient against exogenous attacks on on-board sensors or actuator of the robots in MRS. In this regard, we model additive sensor and actuator faults which are induced externally to render the MRS unstable. However, applying $H_{\infty}$ control protocols by employing a static output-feedback design technique guarantees bounded $L_2$ gains of the error induced by the sensor and actuator fault signals. Finally, we apply policy iteration based Q-Learning to solve for adaptive gains for the discrete-time MRS. Simulation results are provided to support the theoretical findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源