论文标题

有限域中随机轨迹的通用特性

A universal property of random trajectories in bounded domains

论文作者

Binzoni, Tiziano, Dumonteil, Eric, Mazzolo, Alain

论文摘要

著名的不变性属性指出,粒子进入有限的域,以及各向同性和均匀的发射率,平均支出$ \ langle \ ell \ el \ rangle = 4v/s $内部,无论它们如何散射。 We show that this remarkable property is merely the infinite-length limit of an even broader law: for any curves randomly placed and oriented in space -- stochastic or deterministic, generated by ballistic or diffusive dynamics, with possible stopping or branching, in two or more dimensions -- $ \displaystyle \frac{1}{\langle \ell \rangle}= \frac{1}{\langle L\rangle}+ \frac{1}{\langle σ\rangle} $, with $\langle\ell\rangle$ its mean in-domain path, $\langle L\rangle$ its mean total length, and $\langleσ\rangle$ the mean chord of the domain, a已知的几何数量与体积与表面比有关。结果仅源自整体几何形状的运动学公式,与步长统计,记忆,吸收和分支无关,使其与浊度组织中的光子,微通道中的活性细菌,分子云中的宇宙射线或核反应器中的中子链同样相关。跨越直针,Y形和2D和3D的各向同性随机步行的蒙特卡洛模拟证实了普遍性,并证明了$ \ langle \ ell \ rangle $ budy $ \ langle l \ langle l \ rangle $ nofe n over ers ers ers over Ever to the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the the,$ \ langle \ ell \ rangle $均如何。

The celebrated invariance property states that particles entering a bounded domain, with isotropic and uniform incidence, spend on average $\langle \ell \rangle=4V/S$ length inside, no matter how they scatter. We show that this remarkable property is merely the infinite-length limit of an even broader law: for any curves randomly placed and oriented in space -- stochastic or deterministic, generated by ballistic or diffusive dynamics, with possible stopping or branching, in two or more dimensions -- $ \displaystyle \frac{1}{\langle \ell \rangle}= \frac{1}{\langle L\rangle}+ \frac{1}{\langle σ\rangle} $, with $\langle\ell\rangle$ its mean in-domain path, $\langle L\rangle$ its mean total length, and $\langleσ\rangle$ the mean chord of the domain, a known geometric quantity related to the volume-to-surface ratio. Derived solely from the kinematic formula of integral geometry, the result is independent of step-length statistics, memory, absorption, and branching, making it equally relevant to photons in turbid tissue, active bacteria in micro-channels, cosmic rays in molecular clouds, or neutron chains in nuclear reactors. Monte-Carlo simulations spanning straight needles, Y-shapes, and isotropic random walks in 2D and 3D confirm the universality and demonstrate how a local measurement of $\langle \ell \rangle$ yields $\langle L\rangle$ without ever tracking the full trajectory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源