论文标题
$ \ mathbb {p}^1 $的理性点密度,带有三个二叠体点
The density of rational points on $\mathbb{P}^1$ with three stacky points
论文作者
论文摘要
在本文中,我们考虑了“ stacky”曲线$ \ mathcal {x}(\ Mathbb {p}^1; 0,2; 1,2; 1,2; \ infty,2)$的理性点的密度密度,这是$ \ mathbb {p}^1 $,有三个半点,有三个半点,相对于所谓的Ellenberg-sulich fluter。特别是,我们证明了艾伦伯格的猜想。
In this paper we consider the density of rational points on the "stacky" curve $\mathcal{X}(\mathbb{P}^1;0,2;1,2;\infty,2)$ which is $\mathbb{P}^1$ with three half points, with respect to the so-called Ellenberg-Satriano-Zuerick-Brown height. In particular, we prove a conjecture of Ellenberg.