论文标题
大量时空维度的滚筒
The Swampland at Large Number of Space-Time Dimensions
论文作者
论文摘要
我们在大量时空维度$ d $中讨论了Swampland约束的某些方面,尤其是Swampland距离猜想。我们分析了Kaluza-Klein(KK)大致$ d $,发现一些KK Spectra对$ d $具有有趣的依赖。根据这些观察结果,我们提出了一个新的大尺寸猜想。我们将其应用于紧凑型的KK状态,以预测在其特征半径的函数时预测时空维度的上限。我们还将猜想应用于黑洞的空间,其熵的依赖性与KK频谱非常相似。
We discuss some aspects of swampland constraints - especially the swampland distance conjecture - in a large number of space-time dimensions $D$. We analyze Kaluza-Klein (KK) states at large $D$ and find that some KK spectra possess an interesting dependence on $D$. On the basis of these observations we propose a new large dimension conjecture. We apply it to KK states of compactifications to anti-de Sitter backgrounds where it predicts an upper bound on the dimension of space-time as a function of its characteristic radius. We also apply our conjecture to black hole spacetimes, whose entropies have a $D$-dependence very similar to that of the KK spectrum.