论文标题

学习潜在的表示以影响多代理互动

Learning Latent Representations to Influence Multi-Agent Interaction

论文作者

Xie, Annie, Losey, Dylan P., Tolsma, Ryan, Finn, Chelsea, Sadigh, Dorsa

论文摘要

与人类或机器人无缝互动很难,因为这些药物是非平稳的。他们根据自我代理的行为更新其政策,自我代理必须预测这些更改以共同适应。受到人类的启发,我们认识到机器人无需明确地对另一个代理商将采取的每个低级动作进行建模。取而代之的是,我们可以通过高级表示捕获其他代理的潜在策略。我们提出了一个基于强化的学习框架,用于学习代理政策的潜在表示,在这种框架中,自我代理人确定其行为与其他代理人的未来策略之间的关系。然后,自我代理利用这些潜在动态来影响其他代理,故意将其引导到适合共同适应的政策。在几个模拟领域和现实世界中的曲棍球游戏中,我们的方法优于替代方案,并学会影响其他代理。

Seamlessly interacting with humans or robots is hard because these agents are non-stationary. They update their policy in response to the ego agent's behavior, and the ego agent must anticipate these changes to co-adapt. Inspired by humans, we recognize that robots do not need to explicitly model every low-level action another agent will make; instead, we can capture the latent strategy of other agents through high-level representations. We propose a reinforcement learning-based framework for learning latent representations of an agent's policy, where the ego agent identifies the relationship between its behavior and the other agent's future strategy. The ego agent then leverages these latent dynamics to influence the other agent, purposely guiding them towards policies suitable for co-adaptation. Across several simulated domains and a real-world air hockey game, our approach outperforms the alternatives and learns to influence the other agent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源