论文标题
一种基于GAN的方法,用于减轻智能家庭环境中的推理攻击
A GAN-based Approach for Mitigating Inference Attacks in Smart Home Environment
论文作者
论文摘要
智能,连接,始终聆听设备的扩散为智能家庭环境中的用户带来了很大的隐私风险。除了窃听的显着风险之外,入侵者还可以采用机器学习技术来从这些设备上的音频录音中推断敏感信息,从而给智能家庭用户带来新的隐私问题和攻击变量的新维度。声音掩盖和麦克风干扰等技术已被有效地用于防止窃听者聆听私人对话。在这项研究中,我们探讨了对手在智能家居用户中监视借助机器学习技术来推断敏感信息的问题。然后,我们分析随机性在声音掩模对缓解敏感信息泄漏的有效性中的作用。我们提出了一种基于生成的对抗网络(GAN)在智能家居中保存隐私的方法,该方法会产生随机噪声以扭曲不需要的基于机器学习的推理。我们的实验结果表明,GAN可用于生成更有效的声音掩盖噪声信号,这些噪声信号表现出更随机性并有效地减轻基于深度学习的推理攻击,同时保留了音频样本的语义。
The proliferation of smart, connected, always listening devices have introduced significant privacy risks to users in a smart home environment. Beyond the notable risk of eavesdropping, intruders can adopt machine learning techniques to infer sensitive information from audio recordings on these devices, resulting in a new dimension of privacy concerns and attack variables to smart home users. Techniques such as sound masking and microphone jamming have been effectively used to prevent eavesdroppers from listening in to private conversations. In this study, we explore the problem of adversaries spying on smart home users to infer sensitive information with the aid of machine learning techniques. We then analyze the role of randomness in the effectiveness of sound masking for mitigating sensitive information leakage. We propose a Generative Adversarial Network (GAN) based approach for privacy preservation in smart homes which generates random noise to distort the unwanted machine learning-based inference. Our experimental results demonstrate that GANs can be used to generate more effective sound masking noise signals which exhibit more randomness and effectively mitigate deep learning-based inference attacks while preserving the semantics of the audio samples.