论文标题
用于发现低能缺陷配置的进化计算和机器学习
Evolutionary computing and machine learning for the discovering of low-energy defect configurations
论文作者
论文摘要
密度功能理论(DFT)已成为研究材料中点缺陷的标准工具。但是,找到最稳定的有缺陷的结构仍然是一项非常具有挑战性的任务,因为它涉及使用高维度功能的多模式优化问题的解决方案。迄今为止,最常用于解决此问题的方法主要是经验,启发式和/或基于领域知识。在这项贡献中,我们描述了一种基于协方差矩阵适应进化策略(CMA-ES)以及受监督和无监督的机器学习模型来探索势能表面的方法。我们展示了如何修改原始的CMA-E,以适合稀数限制点缺陷的DFT研究的特定问题。所得算法仅取决于有限的物理上可解释的超参数。该方法提供了一种强大而系统的方式,可在固体中找到点缺陷的低能配置。我们证明了硅内在缺陷上的适用性和中等计算成本。我们还将方法应用于TIO $ _2 $ aNATase中的中性氧空位空位,并重现已知的缺陷结构。此外,在该系统中发现了一种新的缺陷结构,在杂化密度功能理论水平上稳定,并以离域电子结构为特征。
Density functional theory (DFT) has become a standard tool for the study of point defects in materials. However, finding the most stable defective structures remains a very challenging task as it involves the solution of a multimodal optimization problem with a high-dimensional objective function. Hitherto, the approaches most commonly used to tackle this problem have been mostly empirical, heuristic and/or based on domain knowledge. In this contribution, we describe an approach for exploring the potential energy surface based on the covariance matrix adaption evolution strategy (CMA-ES) and supervised and unsupervised machine learning models. We show how the original CMA-ES can be modified to suit the specific problem of DFT studies of point defects in the dilute limit. The resulting algorithm depends only on a limited set of physically interpretable hyperparameters. The approach offers a robust and systematic way for finding low-energy configurations of point defects in solids. We demonstrate the applicability and moderate computational cost on the intrinsic defects in silicon. We also apply the methodology to the neutral oxygen vacancy oxygen vacancy in TiO$_2$ anatase and reproduce the known defect structures. Furthermore, a new defect structure, stable at the level of hybrid density functional theory and characterized by a delocalized electronic structure, is found for this system.