论文标题
关键KCM的精致普遍性:下限
Refined universality for critical KCM: lower bounds
论文作者
论文摘要
我们研究了一类称为动力学约束模型(KCM)的一般相互作用的粒子系统,其二维与单调细胞自动机紧密相连,称为bootstrap渗透。这样的模型有三个类别,最受研究的模型是关键的模型。在最近的一系列作品中,显示出具有相同属性的关键引导渗透模型的KCM对应物分为两种具有不同行为的类。 与第一作者的同伴论文一起,我们的工作将感染时间的对数决定了所有关键KCM的恒定因素,以前仅知道,这些因素才能进行对数校正。除了Duarte-KCM之外,这改善了所有以前的结果,我们为此提供了最佳结果的新证明。我们确定在此级别上,必须将关键kcm分为七个类别,而不是在引导渗透中的两个类别。在目前的工作中,我们以统一的方式建立了关键KCM的下限,还恢复了Toninelli和作者的普遍性结果以及Martinelli,Toninelli和第二作者的Duarte模型结果。
We study a general class of interacting particle systems called kinetically constrained models (KCM) in two dimensions tightly linked to the monotone cellular automata called bootstrap percolation. There are three classes of such models, the most studied being the critical one. In a recent series of works it was shown that the KCM counterparts of critical bootstrap percolation models with the same properties split into two classes with different behaviour. Together with the companion paper by the first author, our work determines the logarithm of the infection time up to a constant factor for all critical KCM, which were previously known only up to logarithmic corrections. This improves all previous results except for the Duarte-KCM, for which we give a new proof of the best result known. We establish that on this level of precision critical KCM have to be classified into seven categories instead of the two in bootstrap percolation. In the present work we establish lower bounds for critical KCM in a unified way, also recovering the universality result of Toninelli and the authors and the Duarte model result of Martinelli, Toninelli and the second author.