论文标题
学会用U-Nets deno deno
Learning to Denoise Astronomical Images with U-nets
论文作者
论文摘要
天文图像对于探索和理解宇宙至关重要。在天文学群落中,能够进行深度观察的光学望远镜(例如哈勃太空望远镜)在大量的望远镜中被大大超额认购。图像通常还包含附加噪声,这使得在进一步的数据分析之前,在对数据进行后处理方面是强制性的一步。为了最大程度地提高天文成像后处理的效率和信息增长,我们转向机器学习。我们提出了Astro U-NET,这是一种用于降低图像和增强图像的卷积神经网络。对于概念验证,我们使用带有F555W和F606W过滤器的WFC3仪器UVIS的Hubble太空望远镜图像。我们的网络能够产生具有噪声特性的图像,就好像它们是在曝光时间的两倍以及最小偏差或信息损失的两倍上获得的。从这些图像中,我们能够恢复95.9%的恒星,平均通量误差为2.26%。此外,这些图像平均具有比输入噪声图像高的1.63倍的信噪比,这相当于至少3个输入图像的堆叠,这意味着未来天文图像运动所需的望远镜时间大大减少。
Astronomical images are essential for exploring and understanding the universe. Optical telescopes capable of deep observations, such as the Hubble Space Telescope, are heavily oversubscribed in the Astronomical Community. Images also often contain additive noise, which makes de-noising a mandatory step in post-processing the data before further data analysis. In order to maximise the efficiency and information gain in the post-processing of astronomical imaging, we turn to machine learning. We propose Astro U-net, a convolutional neural network for image de-noising and enhancement. For a proof-of-concept, we use Hubble space telescope images from WFC3 instrument UVIS with F555W and F606W filters. Our network is able to produce images with noise characteristics as if they are obtained with twice the exposure time, and with minimum bias or information loss. From these images, we are able to recover 95.9% of stars with an average flux error of 2.26%. Furthermore the images have, on average, 1.63 times higher signal-to-noise ratio than the input noisy images, equivalent to the stacking of at least 3 input images, which means a significant reduction in the telescope time needed for future astronomical imaging campaigns.