论文标题

边界响应的非本地逆问题

Nonlocal inverse problem with boundary response

论文作者

Ghosh, Tuhin

论文摘要

本文中感兴趣的问题是研究基于与分数Schrödinger方程相关的边界测量的(非本地)逆问题。令$ 0 <a <1 $,和$ u $ solves \ [\ [case} \ left(( - δ)^a + q \右) \ end {cases} \]我们表明,通过将边界测量的外部作为$ \ left(u | _ {w},\ frac {u(x)} {d(x)} {d(x)^a} \ big |_σ\ right)$,可以确定$ q $ q $ q $ q $ q opent $ quop $ subsity,subsity nordecy subsity subsity nordecy copiate copiate ynhor-sep yny-sepatiate ynher-sep yny-和$ d(x)= d(x,\partialΩ)$表示边界距离函数。 我们还讨论了BALL及其应用中大型$ a harmonic功能的本地表征,该功能包括边界独特的延续和局部密度结果。

The problem of interest in this article is to study the (nonlocal) inverse problem of recovering a potential based on the boundary measurement associated with the fractional Schrödinger equation. Let $0<a<1$, and $u$ solves \[\begin{cases} \left((-Δ)^a + q\right)u = 0 \mbox{ in } Ω\\ supp\, u\subseteq \overlineΩ\cup \overline{W}\\ \overline{W} \cap \overlineΩ=\emptyset. \end{cases} \] We show that by making the exterior to boundary measurement as $\left(u|_{W}, \frac{u(x)}{d(x)^a}\big|_Σ\right)$, it is possible to determine $q$ uniquely in $Ω$, where $Σ\subseteq\partialΩ$ be a non-empty open subset and $d(x)=d(x,\partialΩ)$ denotes the boundary distance function. We also discuss local characterization of the large $a$-harmonic functions in ball and its application which includes boundary unique continuation and local density result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源