论文标题
选定211个最大阶段的弹性特性和晶格动力学:DFT研究
The elastic properties and lattice dynamics for selected 211 MAX phases: A DFT study
论文作者
论文摘要
The elastic properties and lattice dynamics of Ti$_2$AlC, Ti$_2$AlN, Ti$_2$GaC, Ti$_2$GaN, Ti$_2$PbC, Ti$_2$CdC and Ti$_2$SnC have been investigated using the density functional theory within the generalized gradient approximations as expressed in Quantum Espresso and VASP codes.获得的晶格参数与先前的理论研究和可用的实验数据一致。已经计算了所研究的最大阶段的弹性特性。弹性各向异性的值,Young的模量,泊松比和剪切模量表明,这些化合物是稳定且延性的,并且Ti $ _2 $ _2 $ PBC和Ti $ _2 $ CDC比其他所考虑的化合物更稳定。因此,这七种化合物可能对工业应用有用。计算出的声子光谱证实,由于缺乏假想的声子模式,研究的最大相位是动态稳定的。使用Slack概述的Debye理论确定了最大相位的温度依赖性晶格导热率。 Ti $ _2 $ _2 $ 1300 K获得的$κ_{ph} $与9 $ \%$内的实验结果一致。通过使用Clarke提出的经验公式获得的最大最大相位的最小热电导率($κ_{min} $)表明,Ti $ _2 $ PBC具有最低的最小导热率。
The elastic properties and lattice dynamics of Ti$_2$AlC, Ti$_2$AlN, Ti$_2$GaC, Ti$_2$GaN, Ti$_2$PbC, Ti$_2$CdC and Ti$_2$SnC have been investigated using the density functional theory within the generalized gradient approximations as expressed in Quantum Espresso and VASP codes. The obtained lattice parameters are in agreement with the previous theoretical research and available experimental data. The elastic properties of the MAX phases under study have been calculated. The values of elastic anisotropy, Young's modulus, Poisson ratio and shear modulus reveal that the compounds are stable and ductile and that Ti$_2$PbC and Ti$_2$CdC are more stable than the other considered compounds. Thus, the seven compounds may be useful for industrial applications. The calculated phonon spectra confirm that the studied MAX phases are dynamically stable because of the absence of imaginary phonon modes. The temperature dependent lattice thermal conductivity of MAX phases have been determined using the Debye theory as outlined by Slack. The obtained $κ_{ph}$ for Ti$_2$AlC at 1300 K agree with experimental findings within 9$\%$. The estimated minimum thermal conductivities ($κ_{min}$) of the MAX phases obtained by using empirical formula suggested by Clarke show that Ti$_2$PbC possesses the lowest minimum thermal conductivity.