论文标题
使用配置熵的全息暗能模型的研究
A study of holographic dark energy models using configuration entropy
论文作者
论文摘要
全息暗能模型提供了深色能量的替代描述。这些模型是由于全息原理可能应用于暗能量问题而激发的。我们使用宇宙中物质分布的配置熵研究了一个参数Li全息暗能和两个参数Barrow全息暗能模型。配置熵速率在特定比例因子上表现出明显的最小值,该系数与时代相对应,除此之外,黑暗能量在宇宙的加速膨胀中发挥了作用。我们发现,熵速率最小的最小和幅度的位置对模型的参数敏感。我们发现这些数量和每个模型的参数之间的最佳拟合关系。我们建议这些关系可用于从多个红移的配置熵的未来测量中限制全息暗能模型的参数。此外,巴罗全息暗能模型基于巴罗熵,它修改了标准的贝肯斯坦 - 鹰熵,以捕获由于量子重力效应而引起的黑洞表面的变形。我们发现,配置熵速率的最小值的位置和幅度对Barrow模型中的变形指数$δ$非常敏感。我们的研究表明,可以从大规模上物质分布的构型熵的研究中检测到量子引力效应对未来事件地平线的特征。
The holographic dark energy models provide an alternative description of the dark energy. These models are motivated by the possible application of holographic principle to the dark energy problem. We study the one parameter Li holographic dark energy and the two parameter Barrow holographic dark energy models using configuration entropy of the matter distribution in the Universe. The configuration entropy rate exhibits a distinct minimum at a specific scale factor that corresponds to the epoch, beyond which the dark energy takes a driving role in the accelerated expansion of the Universe. We find that the location of the minimum and magnitude of the entropy rate at the minimum are sensitive to the parameters of the models. We find the best fit relations between these quantities and the parameters of each model. We propose that these relations can be used to constrain the parameters of the holographic dark energy models from the future measurements of the configuration entropy at multiple redshifts. Further, the Barrow holographic dark energy model is based on Barrow entropy which modifies the standard Bekenstein-Hawking entropy, to capture the deformation of the black-hole surface due to quantum gravitational effects. We find that the location and amplitude of the minimum of the configuration entropy rate is strongly sensitive to the deformation exponent $Δ$ in the Barrow model. Our study suggests that signatures of the quantum gravitational effects on the future event horizon may be detected from the study of the configuration entropy of the matter distribution on large-scales.