论文标题

11 teraflops每秒光子卷积加速器,用于深度学习光神经网络

11 TeraFLOPs per second photonic convolutional accelerator for deep learning optical neural networks

论文作者

Xu, Xingyuan, Tan, Mengxi, Corcoran, Bill, Wu, Jiayang, Boes, Andreas, Nguyen, Thach G., Chu, Sai T., Little, Brent E., Hicks, Damien G., Morandotti, Roberto, Mitchell, Arnan, Moss, David J.

论文摘要

受生物视觉皮层系统启发的卷积神经网络(CNN)是人工神经网络的强大类别,可以提取原始数据的层次特征,从而大大降低网络参数复杂性并提高预测准确性。对于机器学习任务,例如计算机视觉,语音识别,玩棋盘游戏和医学诊断,它们具有重大兴趣。光学神经网络提供了急剧加速计算速度的希望,以克服固有的电子设备带宽瓶颈。在这里,我们演示了一个超过10个TERAFLOP(每秒浮点操作)运行的通用光学矢量卷积加速器,生成了250,000像素的图像的卷积,同时使用8位分辨率的8位分辨率,足以容纳面部图像识别。然后,我们使用相同的硬件依次形成具有十个输出神经元的深度光学CNN,并以88%精度获得了900个像素手写的数字图像,成功地识别了全10位数字。我们的结果基于同时交织的时间,波长和空间维度,由集成的微型梳子源启用。这种方法是可扩展的,可训练更复杂的网络,用于苛刻的应用程序,例如无人车和实时视频识别。

Convolutional neural networks (CNNs), inspired by biological visual cortex systems, are a powerful category of artificial neural networks that can extract the hierarchical features of raw data to greatly reduce the network parametric complexity and enhance the predicting accuracy. They are of significant interest for machine learning tasks such as computer vision, speech recognition, playing board games and medical diagnosis. Optical neural networks offer the promise of dramatically accelerating computing speed to overcome the inherent bandwidth bottleneck of electronics. Here, we demonstrate a universal optical vector convolutional accelerator operating beyond 10 TeraFLOPS (floating point operations per second), generating convolutions of images of 250,000 pixels with 8 bit resolution for 10 kernels simultaneously, enough for facial image recognition. We then use the same hardware to sequentially form a deep optical CNN with ten output neurons, achieving successful recognition of full 10 digits with 900 pixel handwritten digit images with 88% accuracy. Our results are based on simultaneously interleaving temporal, wavelength and spatial dimensions enabled by an integrated microcomb source. This approach is scalable and trainable to much more complex networks for demanding applications such as unmanned vehicle and real-time video recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源