论文标题

缝纫结构块的收敛

Convergence of Sewing Conformal Blocks

论文作者

Gui, Bin

论文摘要

在最近的工作中,Damiolini-Gibney-Tarasca表明,对于$ C_2 $ -COFINITE,有理CFT型顶点操作员代数$ \ MATHBB V $,共形块的支架是本地免费的,并满足分解属性。在本文中,我们使用分析方法来证明缝纫结构是收敛的,解决了Zhu和Huang提出的猜想。

In recent work, Damiolini-Gibney-Tarasca showed that for a $C_2$-cofinite rational CFT-type vertex operator algebra $\mathbb V$, sheaves of conformal blocks are locally free and satisfy the factorization property. In this article, we use analytic methods to prove that sewing conformal blocks is convergent, solving a conjecture proposed by Zhu and Huang.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源