论文标题
缝纫结构块的收敛
Convergence of Sewing Conformal Blocks
论文作者
论文摘要
在最近的工作中,Damiolini-Gibney-Tarasca表明,对于$ C_2 $ -COFINITE,有理CFT型顶点操作员代数$ \ MATHBB V $,共形块的支架是本地免费的,并满足分解属性。在本文中,我们使用分析方法来证明缝纫结构是收敛的,解决了Zhu和Huang提出的猜想。
In recent work, Damiolini-Gibney-Tarasca showed that for a $C_2$-cofinite rational CFT-type vertex operator algebra $\mathbb V$, sheaves of conformal blocks are locally free and satisfy the factorization property. In this article, we use analytic methods to prove that sewing conformal blocks is convergent, solving a conjecture proposed by Zhu and Huang.