论文标题

当地拓扑障碍

Local topological obstruction for divisors

论文作者

Biswas, Indranil, Dan, Ananyo

论文摘要

鉴于平滑,投影的品种$ x $和有效的除数$ d \,\ subseteq \,x $,众所周知,(拓扑)阻碍了基本类别的$ d $作为hodge类的变形,是$ h^2(\ h^2(\ mathcal {o} _x)$。在本文中,我们用$ h^2_d(\ Mathcal {o} _x)$替换$ h^2(\ mathcal {o} _x)$,并提供类似的拓扑阻塞理论。我们将最终的局部拓扑阻塞理论与几何阻塞理论进行了比较(即,$ d $的变形的障碍物是一阶的无限变形$ x $的有效卡地亚除数)。我们将其应用于研究线性系统和Noether-Lefschetz基因座的跳跃基因座。最后,我们给出了一阶变形的示例$ x_t $ x $ $ x $的$ x $,同级$ [d] $变形为hodge类,但$ d $却不是作为有效的卡地亚除数$ x_t $。

Given a smooth, projective variety $X$ and an effective divisor $D\,\subseteq\, X$, it is well-known that the (topological) obstruction to the deformation of the fundamental class of $D$ as a Hodge class, lies in $H^2(\mathcal{O}_X)$. In this article, we replace $H^2(\mathcal{O}_X)$ by $H^2_D(\mathcal{O}_X)$ and give an analogous topological obstruction theory. We compare the resulting local topological obstruction theory with the geometric obstruction theory (i.e., the obstruction to the deformation of $D$ as an effective Cartier divisor of a first order infinitesimal deformations of $X$). We apply this to study the jumping locus of families of linear systems and the Noether-Lefschetz locus. Finally, we give examples of first order deformations $X_t$ of $X$ for which the cohomology class $[D]$ deforms as a Hodge class but $D$ does not lift as an effective Cartier divisor of $X_t$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源