论文标题
五重的差异方程3倍
Difference Equation for Quintic 3-Fold
论文作者
论文摘要
在本文中,我们使用Mellin-Barnes-Watson方法将某种类型的$ Q $ -Difference方程的解决方案($ Q = 0 $和$ q = \ infty $)相关联。我们考虑两个特殊情况;首先是$ k $ - 理论$ i $ $ $ $ $ $ $ $ $ i $ $ unction的$ q $ - 差异方程式,即25度;我们使用Adams的方法在$ Q = 0 $中找到额外的20个解决方案。第二个特殊情况是紫红色的案例,它与五重奏的$ i $ unction的微分方程相结合。我们计算连接矩阵并研究$ q $ - 差异结构的汇合。
In this paper, we use the Mellin-Barnes-Watson method to relate solutions of a certain type of $q$-difference equations at $Q=0$ and $Q=\infty$. We consider two special cases; the first is the $q$-difference equation of $K$-theoretic $I$-function of the quintic, which is degree 25; we use Adams' method to find the extra 20 solutions at $Q=0$. The second special case is a fuchsian case, which is confluent to the differential equation of the cohomological $I$-function of the quintic. We compute the connection matrix and study the confluence of the $q$-difference structure.