论文标题
学习辅助的用户聚类在无细胞的大型MIMO-NOMA网络中
Learning-Assisted User Clustering in Cell-Free Massive MIMO-NOMA Networks
论文作者
论文摘要
非正交多访问系统(NOMA)系统的较高光谱效率(SE)和用户公平性是通过更有效地利用用户聚类(UC)来实现的。但是,随机的UC肯定会导致次优的解决方案,而详尽的搜索方法则以高复杂性为代价,尤其是对于中度到大尺寸的系统。为了解决这个问题,我们开发了两个有效的无监督机器学习(ML)的UC算法,即K-Means ++和改进的K-Means ++,以有效地将用户聚集到无单元的大量大量多数输入多输入多数输入(CFMMIMO)系统中。在接入点处使用全杆零式,我们在封闭形式表达式中得出了总和表达式的总和SE,考虑了群集内驾驶员污染,群集间干扰和连续的干扰取消的影响。为了全面评估系统性能,我们制定了总和SE优化问题,然后为其解决方案开发一种简单而有效的迭代算法。另外,还表征了共置的大规模MIMO-NOMA(CONSIMO-NOMA)系统的性能。提供数值结果以显示与其他基线方案相比,提出的UC算法的出色性能。还验证了将NOMA应用于CFMMIMO和CONSIMO系统的有效性。
The superior spectral efficiency (SE) and user fairness feature of non-orthogonal multiple access (NOMA) systems are achieved by exploiting user clustering (UC) more efficiently. However, a random UC certainly results in a suboptimal solution while an exhaustive search method comes at the cost of high complexity, especially for systems of medium-to-large size. To address this problem, we develop two efficient unsupervised machine learning (ML) based UC algorithms, namely k-means++ and improved k-means++, to effectively cluster users into disjoint clusters in cell-free massive multiple-input multiple-output (CFmMIMO) system. Using full-pilot zero-forcing at access points, we derive the sum SE in closed-form expression taking into account the impact of intra-cluster pilot contamination, inter-cluster interference, and imperfect successive interference cancellation. To comprehensively assess the system performance, we formulate the sum SE optimization problem, and then develop a simple yet efficient iterative algorithm for its solution. In addition, the performance of collocated massive MIMO-NOMA (COmMIMO-NOMA) system is also characterized. Numerical results are provided to show the superior performance of the proposed UC algorithms compared to other baseline schemes. The effectiveness of applying NOMA in CFmMIMO and COmMIMO systems is also validated.