论文标题

学会在情节动态环境中持续优化无线资源

Learning to Continuously Optimize Wireless Resource In Episodically Dynamic Environment

论文作者

Sun, Haoran, Pu, Wenqiang, Zhu, Minghe, Fu, Xiao, Chang, Tsung-Hui, Hong, Mingyi

论文摘要

人们对开发数据驱动的,尤其是基于深层神经网络(DNN)的方法越来越感兴趣。对于一些流行的任务,例如电力控制,波束形成和MIMO检测,这些方法可以实现最先进的性能,同时需要减少计算工作,较少的渠道状态信息(CSI)等。但是,对于这些动态环境中学习的方法通常具有挑战性,在这种动态环境中,诸如CSIS之类的参数(例如CSIS)继续变化。 这项工作开发了一种方法,该方法可以使数据驱动的方法在动态环境中连续学习和优化。具体而言,我们考虑了``情节动态的设置''环境在``情节''中发生变化的设置,并且在每个情节中,环境都是静止的。我们建议将持续学习(CL)的概念构建到学习无线系统的建模过程中,以便学习模型可以逐步适应新的情节,而{\ it却不忘记从前几集中学到的知识。我们的设计基于一种新型的Min-Max配方,该配方可确保不同的数据样本中的某些“公平”。我们通过将CL方法定制为两个流行的DNN模型(一种用于功率控制和一个用于光束成型),并使用合成和真实的数据集进行测试来证明CL方法的有效性。这些cl既不仅仅表明了毫无疑问的景象,以适应新的景象,并适应了新的景象。在先前遇到的方案中的性能。

There has been a growing interest in developing data-driven and in particular deep neural network (DNN) based methods for modern communication tasks. For a few popular tasks such as power control, beamforming, and MIMO detection, these methods achieve state-of-the-art performance while requiring less computational efforts, less channel state information (CSI), etc. However, it is often challenging for these approaches to learn in a dynamic environment where parameters such as CSIs keep changing. This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment. Specifically, we consider an ``episodically dynamic" setting where the environment changes in ``episodes", and in each episode the environment is stationary. We propose to build the notion of continual learning (CL) into the modeling process of learning wireless systems, so that the learning model can incrementally adapt to the new episodes, {\it without forgetting} knowledge learned from the previous episodes. Our design is based on a novel min-max formulation which ensures certain ``fairness" across different data samples. We demonstrate the effectiveness of the CL approach by customizing it to two popular DNN based models (one for power control and one for beamforming), and testing using both synthetic and real data sets. These numerical results show that the proposed CL approach is not only able to adapt to the new scenarios quickly and seamlessly, but importantly, it maintains high performance over the previously encountered scenarios as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源