论文标题
使用点过程建模对神经调节的局部功率估计
Local power estimation of neuromodulations using point process modeling
论文作者
论文摘要
从大脑记录的细胞外电势(EEP)是在大脑组织内传播的所有细胞过程的积极表现。其量化的标准方法是电源分析方法,这些方法反映了信号功率在频率上的全局分布。但是,这些方法结合了分析窗口以实现本地性,因此受到固有的贸易 - 时间和频率分辨率之间的限制。在本文中,我们提出了一种新型的方法,以更准确地估计局部功率,以高于采样频率的分辨率。我们的方法基于生物信号的既定神经生理学,在该神经生理学中,我们将EEP建模为包括两个组成部分:神经调节和背景活动。然后,我们称局部功率衡量标记的点过程(MPP)频谱图,然后将其作为神经调节点过程的功率加权强度函数得出。我们在两个数据集上演示了我们的结果:1)从3只大鼠执行工作记忆任务的前额叶皮层记录的局部场电位,以及2)通过脑电图记录的EEP从人类受试者的视觉皮层记录,执行条件刺激任务。对功率的详细分析 - 神经调节的特定特定特定特征证实了在神经调节中的功率光谱密度与功率之间的高度相关性,从而确立MPP频谱图作为更精细的功率量度的适当性,它能够在保留信号电源分布的全局结构的同时跟踪功率的局部变化。
Extracellular electrical potentials (EEP) recorded from the brain are an active manifestation of all cellular processes that propagate within a volume of brain tissue. A standard approach for their quantification are power spectral analyses methods that reflect the global distribution of signal power over frequency. However, these methods incorporate analysis windows to achieve locality and therefore, are limited by the inherent trade - off between time and frequency resolutions. In this paper, we present a novel approach to estimate local power more precisely at a resolution as high as the sampling frequency. Our methods are well grounded on established neurophysiology of the bio-signals where we model EEPs as comprising of two components: neuromodulations and background activity. A local measure of power, we call Marked Point Process (MPP) spectrogram, is then derived as a power - weighted intensity function of the point process for neuromodulations. We demonstrate our results on two datasets: 1) local field potentials recorded from the prefrontal cortex of 3 rats performing a working memory task and 2) EEPs recorded via electroencephalography from the visual cortex of human subjects performing a conditioned stimulus task. A detailed analysis of the power - specific marked features of neuromodulations confirm high correlation between power spectral density and power in neuromodulations establishing the aptness of MPP spectrogram as a finer measure of power where it is able to track local variations in power while preserving the global structure of signal power distribution.