论文标题

2d-3d模态翻译的周期一致生成渲染

Cycle-Consistent Generative Rendering for 2D-3D Modality Translation

论文作者

Aumentado-Armstrong, Tristan, Levinshtein, Alex, Tsogkas, Stavros, Derpanis, Konstantinos G., Jepson, Allan D.

论文摘要

对于人类而言,视觉理解本质上是生成的:鉴于3D形状,我们可以假设它在世界上的外观;给定2D图像,我们可以推断出可能引起它的3D结构。因此,我们可以在给定对象的2D视觉和3D结构方式之间转换。在计算机视觉的上下文中,这对应于一个可学习的模块,该模块具有两个目的:(i)生成3D对象(形状到形象翻译)的现实渲染(ii)从映像(图像到形状翻译)推断出现实的3D形状。在本文中,我们学到了这样一个模块,同时意识到获得大型配对2d-3d数据集的困难。通过利用生成域的翻译方法,我们能够定义一种只需要弱监督的学习算法,而不成对的数据。所得模型不仅能够从2D图像中执行3D形状,姿势和纹理推断,而且还可以生成新颖的纹理3D形状和渲染,类似于图形管道。更具体地说,我们的方法(i)渗透了显式的3D网格表示,(ii)利用示例形状来正规化推理,(iii)仅需要一个image掩码(无键盘或摄像头外部),并且(iv)具有生成功能。虽然先前的工作探讨了这些属性的子集,但它们的组合是新颖的。我们演示了我们学到的表示的实用性,以及其在图像生成和未配对的3D形状推理任务上的性能。

For humans, visual understanding is inherently generative: given a 3D shape, we can postulate how it would look in the world; given a 2D image, we can infer the 3D structure that likely gave rise to it. We can thus translate between the 2D visual and 3D structural modalities of a given object. In the context of computer vision, this corresponds to a learnable module that serves two purposes: (i) generate a realistic rendering of a 3D object (shape-to-image translation) and (ii) infer a realistic 3D shape from an image (image-to-shape translation). In this paper, we learn such a module while being conscious of the difficulties in obtaining large paired 2D-3D datasets. By leveraging generative domain translation methods, we are able to define a learning algorithm that requires only weak supervision, with unpaired data. The resulting model is not only able to perform 3D shape, pose, and texture inference from 2D images, but can also generate novel textured 3D shapes and renders, similar to a graphics pipeline. More specifically, our method (i) infers an explicit 3D mesh representation, (ii) utilizes example shapes to regularize inference, (iii) requires only an image mask (no keypoints or camera extrinsics), and (iv) has generative capabilities. While prior work explores subsets of these properties, their combination is novel. We demonstrate the utility of our learned representation, as well as its performance on image generation and unpaired 3D shape inference tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源