论文标题

具有深度学习的微观结构环境中的多类酵母分段

Multiclass Yeast Segmentation in Microstructured Environments with Deep Learning

论文作者

Prangemeier, Tim, Wildner, Christian, Françani, André O., Reich, Christoph, Koeppl, Heinz

论文摘要

细胞分割是从显微镜数据中提取定量单细胞信息的主要瓶颈。在微结构环境的环境中,挑战激怒了。虽然深度学习方法已被证明对通用细胞分割任务有用,但现有的酵母微观结构设置的分割工具依赖于传统的机器学习方法。在这里,我们介绍了经过培训的单个酵母细胞进行多类分割的卷积神经网络,并将其从细胞相似的微观结构中辨别。我们概述了录制的用于培训,验证和测试网络以及典型用例的数据集。我们展示了该方法对在微观结构环境中采用典型合成生物学应用的贡献。这些模型达到了强大的分割结果,在准确性和速度方面表现优于先前的最先进。快速和准确的分割的组合不仅对后验数据处理有益,还可以在线监视数千个被困的单元格或闭环最佳实验设计,从图像处理的角度可行。

Cell segmentation is a major bottleneck in extracting quantitative single-cell information from microscopy data. The challenge is exasperated in the setting of microstructured environments. While deep learning approaches have proven useful for general cell segmentation tasks, existing segmentation tools for the yeast-microstructure setting rely on traditional machine learning approaches. Here we present convolutional neural networks trained for multiclass segmenting of individual yeast cells and discerning these from cell-similar microstructures. We give an overview of the datasets recorded for training, validating and testing the networks, as well as a typical use-case. We showcase the method's contribution to segmenting yeast in microstructured environments with a typical synthetic biology application in mind. The models achieve robust segmentation results, outperforming the previous state-of-the-art in both accuracy and speed. The combination of fast and accurate segmentation is not only beneficial for a posteriori data processing, it also makes online monitoring of thousands of trapped cells or closed-loop optimal experimental design feasible from an image processing perspective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源