论文标题

风格化的神经绘画

Stylized Neural Painting

论文作者

Zou, Zhengxia, Shi, Tianyang, Qiu, Shuang, Yuan, Yi, Shi, Zhenwei

论文摘要

本文提出了一种对图像对绘制的翻译方法,该方法生成了具有可控样式的生动和逼真的绘画艺术品。与以前的图像到图像翻译方法不同,将翻译以像素的预测为主,我们在矢量化的环境中处理了这样的艺术创造过程,并产生了一系列物理有意义的中风参数,可以进一步用于渲染。由于典型的向量渲染不是可区分的,因此我们设计了一个新颖的神经渲染器,该渲染器模仿矢量渲染器的行为,然后将中风预测作为参数搜索过程,以最大化输入和渲染输出之间的相似性。我们探索了有关参数搜索的零梯度问题,并提议从最佳的运输角度解决此问题。我们还表明,以前的神经渲染器存在一个参数耦合问题,并通过栅格网络和阴影网络重新设计了渲染网络,该网络可以更好地处理形状和颜色的分离。实验表明,我们方法产生的绘画在全球外观和局部纹理中都具有很高的保真度。我们的方法也可以通过神经样式转移共同优化,从而进一步传递其他图像的视觉样式。我们的代码和动画结果可在\ url {https://jiupinjia.github.io/neuralpainter/}上获得。

This paper proposes an image-to-painting translation method that generates vivid and realistic painting artworks with controllable styles. Different from previous image-to-image translation methods that formulate the translation as pixel-wise prediction, we deal with such an artistic creation process in a vectorized environment and produce a sequence of physically meaningful stroke parameters that can be further used for rendering. Since a typical vector render is not differentiable, we design a novel neural renderer which imitates the behavior of the vector renderer and then frame the stroke prediction as a parameter searching process that maximizes the similarity between the input and the rendering output. We explored the zero-gradient problem on parameter searching and propose to solve this problem from an optimal transportation perspective. We also show that previous neural renderers have a parameter coupling problem and we re-design the rendering network with a rasterization network and a shading network that better handles the disentanglement of shape and color. Experiments show that the paintings generated by our method have a high degree of fidelity in both global appearance and local textures. Our method can be also jointly optimized with neural style transfer that further transfers visual style from other images. Our code and animated results are available at \url{https://jiupinjia.github.io/neuralpainter/}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源