论文标题
使用对数学模型的Cinematic-L1视频稳定
Cinematic-L1 Video Stabilization with a Log-Homography Model
论文作者
论文摘要
我们提出了一种稳定手持视频的方法,该方法模拟了摄影师摄影师使用三脚架,娃娃和稳态等设备实现的方法。我们制定了一个约束的凸优化问题,最小化稳定运动的前三个衍生物的$ \ ell_1 $ norm。我们的方法扩展了Grundmann等人的工作。 [9]通过使用完整的同型(而不是亲和力)求解,以纠正透视图,并通过在对数学空间中工作来保持线性。我们还构建了保留视野的作物约束;将问题建模为二次(而不是线性)程序,以允许$ \ ell_2 $术语鼓励对原始轨迹的保真度;并添加约束和目标以减少失真。此外,我们提出了通过包含约束和集中目标来处理显着对象的新方法。最后,我们描述了在线性时间和有界内存中近似解决方案的窗口策略。我们的方法是在计算上有效的,在iPhone Xs上以300fps运行,并产生高质量的结果,因为我们通过稳定视频,与[9]和其他方法的稳定视频,定量和定性比较以及消融研究所证明的。
We present a method for stabilizing handheld video that simulates the camera motions cinematographers achieve with equipment like tripods, dollies, and Steadicams. We formulate a constrained convex optimization problem minimizing the $\ell_1$-norm of the first three derivatives of the stabilized motion. Our approach extends the work of Grundmann et al. [9] by solving with full homographies (rather than affinities) in order to correct perspective, preserving linearity by working in log-homography space. We also construct crop constraints that preserve field-of-view; model the problem as a quadratic (rather than linear) program to allow for an $\ell_2$ term encouraging fidelity to the original trajectory; and add constraints and objectives to reduce distortion. Furthermore, we propose new methods for handling salient objects via both inclusion constraints and centering objectives. Finally, we describe a windowing strategy to approximate the solution in linear time and bounded memory. Our method is computationally efficient, running at 300fps on an iPhone XS, and yields high-quality results, as we demonstrate with a collection of stabilized videos, quantitative and qualitative comparisons to [9] and other methods, and an ablation study.