论文标题
Sami Galaxy调查:一种在星系调查中恒星运动学最佳分类的统计方法
The SAMI Galaxy Survey: a statistical approach to an optimal classification of stellar kinematics in galaxy surveys
论文作者
论文摘要
现在,来自多对象IFS调查的大型星系样品可以使用分辨的运动学对Z〜0星系群进行统计分析。但是,数量统计数据的改善是有代价的,多目标IFS调查受到观察和较低S/N的影响的严重影响。我们介绍了来自Sami Galaxy调查的〜1800个星系的分析,并研究了自旋参数代理的运动学分布的扩散和重叠,$λ_{re} $作为恒星质量和椭圆度的函数。对于SAMI数据,用\ textsc {kinemetry}识别为常规和非规范旋转器的星系的分布在$λ_{re} $ - $ \ varepsilon_e $图中显示出相当大的重叠。相比之下,视觉分类的星系(明显和非明显的旋转器)在$λ_{re} $空间中更好地分开,这两个分布的重叠较少。然后,我们使用贝叶斯混合模型分析观察到的$λ_{re} $ - $ \ log(m _*/m _*/m _ {\ odot})$分布。 Below $\log(M_{\star}/M_{\odot})\sim10.5$, a single beta distribution is sufficient to fit the complete $λ_{Re}$ distribution, whereas a second beta distribution is required above $\log(M_{\star}/M_{\odot})\sim10.5$ to account for a population of低 - $λ_{re} $星系。虽然贝叶斯混合模型呈现了两个运动学种群的最干净的分离,但我们发现在未来的研究中,不应忽略通过视觉分类运动图提供的独特信息。该混合模型应用于不同宇宙学模拟的模拟观察,还可以预测bimodal $λ_{re} $分布,尽管具有$λ_{re} $ peacs的不同位置。我们的分析验证了先前较小的IFS调查的结论,但也证明了使用运动学选择标准的重要性,这些标准由观察到的或模拟数据的质量决定。
Large galaxy samples from multi-object IFS surveys now allow for a statistical analysis of the z~0 galaxy population using resolved kinematics. However, the improvement in number statistics comes at a cost, with multi-object IFS survey more severely impacted by the effect of seeing and lower S/N. We present an analysis of ~1800 galaxies from the SAMI Galaxy Survey and investigate the spread and overlap in the kinematic distributions of the spin parameter proxy $λ_{Re}$ as a function of stellar mass and ellipticity. For SAMI data, the distributions of galaxies identified as regular and non-regular rotators with \textsc{kinemetry} show considerable overlap in the $λ_{Re}$-$\varepsilon_e$ diagram. In contrast, visually classified galaxies (obvious and non-obvious rotators) are better separated in $λ_{Re}$ space, with less overlap of both distributions. Then, we use a Bayesian mixture model to analyse the observed $λ_{Re}$-$\log(M_*/M_{\odot})$ distribution. Below $\log(M_{\star}/M_{\odot})\sim10.5$, a single beta distribution is sufficient to fit the complete $λ_{Re}$ distribution, whereas a second beta distribution is required above $\log(M_{\star}/M_{\odot})\sim10.5$ to account for a population of low-$λ_{Re}$ galaxies. While the Bayesian mixture model presents the cleanest separation of the two kinematic populations, we find the unique information provided by visual classification of kinematic maps should not be disregarded in future studies. Applied to mock-observations from different cosmological simulations, the mixture model also predicts bimodal $λ_{Re}$ distributions, albeit with different positions of the $λ_{Re}$ peaks. Our analysis validates the conclusions from previous smaller IFS surveys, but also demonstrates the importance of using kinematic selection criteria that are dictated by the quality of the observed or simulated data.