论文标题

使用目标跟踪和虚假峰取消算法的协作三层体系结构非接触式呼吸速率监测

Collaborative Three-Tier Architecture Non-contact Respiratory Rate Monitoring using Target Tracking and False Peaks Eliminating Algorithms

论文作者

Mo, Haimiao, Ding, Shuai, Yang, Shanlin, Vasilakos, Athanasios V., Zheng, Xi

论文摘要

监测呼吸率对于帮助我们识别呼吸系统疾病至关重要。常规呼吸监测的设备不方便且几乎无法使用。最近的研究表明,非接触式技术(例如光摄影学和红外热力学)的能力从面部收集呼吸信号并监测呼吸。但是,当前的非接触式呼吸监测技术的精度较差,因为它们对照明和运动伪影等环境影响很敏感。此外,在现实世界中医疗应用程序设置中,用户与云之间的频繁联系可能会导致服务请求延迟,并可能导致个人数据的丢失。我们提出了一种具有协作三层设计的非接触式呼吸速率监测系统,以提高呼吸监测的精度并减少数据传输潜伏期。为了减少数据传输和网络延迟,我们的三层体系结构逐层分解了呼吸监视的计算任务。此外,我们通过设计目标跟踪算法和消除假峰以提取高质量呼吸信号的算法来提高呼吸监测的准确性。通过收集数据并选择面部的几个感兴趣区域,我们能够提取呼吸信号并研究不同区域如何影响呼吸监测。实验的结果表明,当使用鼻部区域提取呼吸信号时,它在实验上表现最好。我们的方法在传输较少的数据时的表现要比竞争对手的方法更好。

Monitoring the respiratory rate is crucial for helping us identify respiratory disorders. Devices for conventional respiratory monitoring are inconvenient and scarcely available. Recent research has demonstrated the ability of non-contact technologies, such as photoplethysmography and infrared thermography, to gather respiratory signals from the face and monitor breathing. However, the current non-contact respiratory monitoring techniques have poor accuracy because they are sensitive to environmental influences like lighting and motion artifacts. Furthermore, frequent contact between users and the cloud in real-world medical application settings might cause service request delays and potentially the loss of personal data. We proposed a non-contact respiratory rate monitoring system with a cooperative three-layer design to increase the precision of respiratory monitoring and decrease data transmission latency. To reduce data transmission and network latency, our three-tier architecture layer-by-layer decomposes the computing tasks of respiration monitoring. Moreover, we improved the accuracy of respiratory monitoring by designing a target tracking algorithm and an algorithm for eliminating false peaks to extract high-quality respiratory signals. By gathering the data and choosing several regions of interest on the face, we were able to extract the respiration signal and investigate how different regions affected the monitoring of respiration. The results of the experiment indicate that when the nasal region is used to extract the respiratory signal, it performs experimentally best. Our approach performs better than rival approaches while transferring fewer data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源