论文标题

线性响应理论具有有限范围的相互作用

Linear Response Theory with finite-range interactions

论文作者

Davesne, Dany, Pastore, Alessandro, Navarro, Jesus

论文摘要

这篇综述着重于使用现象学有限范围的相互作用(配备或不配备张量)的无限核物质响应函数的计算。其中包括Gogny和Nakada的家庭,这些家庭通常在文献中使用。由于有限范围,主要的技术难度源于粒子孔相互作用的交换项。我们首先根据所谓的兰道和粒子孔相互作用的landau样近似值提出结果。然后,我们审查两种原则上提供数值确切响应函数的方法。第一个是基于颗粒 - 孔相互作用和粒子孔传播器的多极扩展,第二个是基于响应函数的持续分数扩展。可以将数值精度推到任何准确性,但实际上表明两个或三个术语足以获得收敛的结果。最后,我们将形式主义应用于确定有限范围相互作用引起的可能有限尺寸的不稳定性。

This review focuses on the calculation of infinite nuclear matter response functions using phenomenological finite-range interactions, equipped or not with tensor terms. These include Gogny and Nakada families, which are commonly used in the literature. Because of the finite-range, the main technical difficulty stems from the exchange terms of the particle-hole interaction. We first present results based on the so-called Landau and Landau-like approximations of the particle-hole interaction. Then, we review two methods which in principle provide numerically exact response functions. The first one is based on a multipolar expansion of both the particle-hole interaction and the particle-hole propagator and the second one consists in a continued fraction expansion of the response function. The numerical precision can be pushed to any degree of accuracy, but it is actually shown that two or three terms suffice to get converged results. Finally, we apply the formalism to the determination of possible finite-size instabilities induced by a finite-range interaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源