论文标题
图形神经网络的设计空间
Design Space for Graph Neural Networks
论文作者
论文摘要
图神经网络(GNN)的快速演变导致了越来越多的新体系结构以及新颖的应用。但是,当前的研究重点是提出和评估GNN的特定体系结构设计,而不是研究由不同设计维度的笛卡尔产品组成的GNN的更一般的设计空间,例如层的数量或聚合功能的类型。此外,GNN设计通常专门从事一项任务,但是很少有努力了解如何快速找到新任务或新型数据集的最佳GNN设计。在这里,我们定义并系统地研究了GNN的建筑设计空间,该设计空间由32个不同的预测任务组成的315,000种不同的设计组成。我们的方法具有三个关键创新:(1)一般GNN设计空间; (2)具有相似性度量的GNN任务空间,因此对于给定的新颖任务/数据集,我们可以快速识别/转移最佳性能架构; (3)一种有效而有效的设计空间评估方法,它允许从大量模型任务组合中提取见解。我们的关键结果包括:(1)一组设计良好的GNN的准则; (2)虽然最佳的GNN设计针对不同任务的设计差异很大,但GNN任务空间允许在不同任务中转移最佳设计; (3)使用我们的设计空间发现的模型实现了最新的性能。总体而言,我们的工作提供了一种有原则可扩展的方法,可以从研究针对特定任务的单个GNN设计到系统地研究GNN设计空间和任务空间。最后,我们发布了GraphGyM,这是一个强大的平台,用于探索不同的GNN设计和任务。 GraphGym具有模块化的GNN实施,标准化的GNN评估以及可再现且可扩展的实验管理。
The rapid evolution of Graph Neural Networks (GNNs) has led to a growing number of new architectures as well as novel applications. However, current research focuses on proposing and evaluating specific architectural designs of GNNs, as opposed to studying the more general design space of GNNs that consists of a Cartesian product of different design dimensions, such as the number of layers or the type of the aggregation function. Additionally, GNN designs are often specialized to a single task, yet few efforts have been made to understand how to quickly find the best GNN design for a novel task or a novel dataset. Here we define and systematically study the architectural design space for GNNs which consists of 315,000 different designs over 32 different predictive tasks. Our approach features three key innovations: (1) A general GNN design space; (2) a GNN task space with a similarity metric, so that for a given novel task/dataset, we can quickly identify/transfer the best performing architecture; (3) an efficient and effective design space evaluation method which allows insights to be distilled from a huge number of model-task combinations. Our key results include: (1) A comprehensive set of guidelines for designing well-performing GNNs; (2) while best GNN designs for different tasks vary significantly, the GNN task space allows for transferring the best designs across different tasks; (3) models discovered using our design space achieve state-of-the-art performance. Overall, our work offers a principled and scalable approach to transition from studying individual GNN designs for specific tasks, to systematically studying the GNN design space and the task space. Finally, we release GraphGym, a powerful platform for exploring different GNN designs and tasks. GraphGym features modularized GNN implementation, standardized GNN evaluation, and reproducible and scalable experiment management.