论文标题
类固醇动作的拓扑动力
Topological Dynamics of Groupoid Actions
论文作者
论文摘要
拓扑动力学的一些基本概念和结果扩展到拓扑空间中的连续类固醇作用。我们主要关注复发属性。除了类似于经典的小组行动案例的结果,但必须放置在正确的环境中,还有新现象。主要是针对源图没有打开(并且有很多)的群体素,在此一般框架中,有些属性等效于小组动作。我们用各种反例来说明这一点。
Some basic notions and results in Topological Dynamics are extended to continuous groupoid actions in topological spaces. We focus mainly on recurrence properties. Besides results that are analogous to the classical case of group actions, but which have to be put in the right setting, there are also new phenomena. Mostly for groupoids whose source map is not open (and there are many), some properties which were equivalent for group actions become distinct in this general framework; we illustrate this with various counterexamples.