论文标题

SOFTSEG:软件与二进制训练的优势用于图像分割

SoftSeg: Advantages of soft versus binary training for image segmentation

论文作者

Gros, Charley, Lemay, Andreanne, Cohen-Adad, Julien

论文摘要

大多数图像分割算法都是在每个像素的分类任务中以二进制掩码进行训练的。但是,在诸如医学成像之类的应用中,这种“黑白”方法太限制了,因为两个组织之间的对比度通常是不确定的,即位于物体边缘上的体素包含组织的混合物。因此,分配一个“硬”标签可能会导致有害的近似。取而代之的是,包含非二元值的软预测将克服该限制。我们介绍了SoftSeg,这是一种深入的学习训练方法,利用软地面真相标签,并且不受二进制预测。 SoftSeg旨在解决回归而不是分类问题。这是通过(i)在预处理和数据增强后使用(i)无二线化来实现的,(ii)归一化的relu最终激活层(而不是sigmoid),以及(iii)回归损失函数(而不是传统的骰子损失)。我们评估了这三个特征对脊髓灰质,多发性硬化症脑病变和多模式脑肿瘤分割挑战的三个开源MRI分割数据集的影响。在多个交叉验证的迭代中,软术的表现优于常规方法,导致灰质数据集的骰子得分为2.0%(P = 0.001),MS病变的骰子得分为3.3%,脑部肿瘤的骰子得分为3.3%。软索在组织的界面上产生一致的软预测,并显示出对小物体的灵敏度的提高。软标签的丰富性可以代表专家间的变异性,部分体积效应,并补充模型不确定性估计。开发的培训管道可以轻松地纳入大多数现有的深度学习架构中。它已经在免费的深度学习工具箱中实现(https://ivadomed.org)。

Most image segmentation algorithms are trained on binary masks formulated as a classification task per pixel. However, in applications such as medical imaging, this "black-and-white" approach is too constraining because the contrast between two tissues is often ill-defined, i.e., the voxels located on objects' edges contain a mixture of tissues. Consequently, assigning a single "hard" label can result in a detrimental approximation. Instead, a soft prediction containing non-binary values would overcome that limitation. We introduce SoftSeg, a deep learning training approach that takes advantage of soft ground truth labels, and is not bound to binary predictions. SoftSeg aims at solving a regression instead of a classification problem. This is achieved by using (i) no binarization after preprocessing and data augmentation, (ii) a normalized ReLU final activation layer (instead of sigmoid), and (iii) a regression loss function (instead of the traditional Dice loss). We assess the impact of these three features on three open-source MRI segmentation datasets from the spinal cord gray matter, the multiple sclerosis brain lesion, and the multimodal brain tumor segmentation challenges. Across multiple cross-validation iterations, SoftSeg outperformed the conventional approach, leading to an increase in Dice score of 2.0% on the gray matter dataset (p=0.001), 3.3% for the MS lesions, and 6.5% for the brain tumors. SoftSeg produces consistent soft predictions at tissues' interfaces and shows an increased sensitivity for small objects. The richness of soft labels could represent the inter-expert variability, the partial volume effect, and complement the model uncertainty estimation. The developed training pipeline can easily be incorporated into most of the existing deep learning architectures. It is already implemented in the freely-available deep learning toolbox ivadomed (https://ivadomed.org).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源