论文标题

学习调整的加权分页

Learning-Augmented Weighted Paging

论文作者

Bansal, Nikhil, Coester, Christian, Kumar, Ravi, Purohit, Manish, Vee, Erik

论文摘要

我们考虑了加权分页的天然半online模型,在任何页面下,在任何页面下的下一次到达时,在任何时候都会对算法进行预测(可能带有错误)。该模型的灵感来自Belady的经典最佳离线算法,用于未加权的分页,并将最近研究的模型扩展到了学习淘汰的分页(Lykouris和Vassilvitskii,2018,2018)。 对于完美预测的情况,我们提供了$ \ ell $ - 竞争性的确定性和$ o(\ log \ ell)$ - 竞争性随机算法,其中$ \ ell $是不同重量类别的数量。这两个界限都很紧,这意味着当页面权重在$ 1 $和$ W $之间时,分别是$ O(\ log w)$ - 和$ o(\ log \ log w)$ - 竞争比。以前,尚不清楚如何在加权设置中使用这些预测,而仅$ k $和$ o(\ log k)$的范围是已知的,其中$ k $是缓存大小。我们的结果还推广到交错的分页设置和不完美的预测情况,竞争比分别从$ o(\ ell)$和$ O(\ log \ ell)$到$ O(k)$和$ O(\ log log K)$顺利地降解,随着预测误差的增加。 我们的结果基于对Belady算法的结构特性和页面到达预测的顺序的几种见解,以及结合了这些预测的新型潜在功能。对于未加权分页的情况,结果意味着基于潜在函数的非常简单的潜在函数证明了Belady算法的最佳性,这可能具有独立的兴趣。

We consider a natural semi-online model for weighted paging, where at any time the algorithm is given predictions, possibly with errors, about the next arrival of each page. The model is inspired by Belady's classic optimal offline algorithm for unweighted paging, and extends the recently studied model for learning-augmented paging (Lykouris and Vassilvitskii, 2018) to the weighted setting. For the case of perfect predictions, we provide an $\ell$-competitive deterministic and an $O(\log \ell)$-competitive randomized algorithm, where $\ell$ is the number of distinct weight classes. Both these bounds are tight, and imply an $O(\log W)$- and $O(\log \log W)$-competitive ratio, respectively, when the page weights lie between $1$ and $W$. Previously, it was not known how to use these predictions in the weighted setting and only bounds of $k$ and $O(\log k)$ were known, where $k$ is the cache size. Our results also generalize to the interleaved paging setting and to the case of imperfect predictions, with the competitive ratios degrading smoothly from $O(\ell)$ and $O(\log \ell)$ to $O(k)$ and $O(\log k)$, respectively, as the prediction error increases. Our results are based on several insights on structural properties of Belady's algorithm and the sequence of page arrival predictions, and novel potential functions that incorporate these predictions. For the case of unweighted paging, the results imply a very simple potential function based proof of the optimality of Belady's algorithm, which may be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源