论文标题
跨扩散方程系统的适应性结果
A well-posedness result for a system of cross-diffusion equations
论文作者
论文摘要
这项工作的主要目的是研究有限函数类别中某些交叉扩散方程的适当性。更确切地说,我们在系统具有主要的线性扩散的假设下显示了有限弱解的存在,唯一性和稳定性。作为应用程序,我们为跨扩散系统提供了一种新的适应性理论,该理论源自具有尺寸排除的跳跃模型。我们的方法基于由合适的Carleson型测量诱导的功能空间中的固定点参数。
This work's major intention is the investigation of the well-posedness of certain cross-diffusion equations in the class of bounded functions. More precisely, we show existence, uniqueness and stability of bounded weak solutions under the assumption that the system has a dominant linear diffusion. As an application, we provide a new well-posedness theory for a cross-diffusion system that originates from a hopping model with size exclusions. Our approach is based on a fixed point argument in a function space that is induced by suitable Carleson-type measures.