论文标题

游戏计划:AI可以为足球做什么,以及足球可以为人工智能做什么

Game Plan: What AI can do for Football, and What Football can do for AI

论文作者

Tuyls, Karl, Omidshafiei, Shayegan, Muller, Paul, Wang, Zhe, Connor, Jerome, Hennes, Daniel, Graham, Ian, Spearman, William, Waskett, Tim, Steele, Dafydd, Luc, Pauline, Recasens, Adria, Galashov, Alexandre, Thornton, Gregory, Elie, Romuald, Sprechmann, Pablo, Moreno, Pol, Cao, Kris, Garnelo, Marta, Dutta, Praneet, Valko, Michal, Heess, Nicolas, Bridgland, Alex, Perolat, Julien, De Vylder, Bart, Eslami, Ali, Rowland, Mark, Jaegle, Andrew, Munos, Remi, Back, Trevor, Ahamed, Razia, Bouton, Simon, Beauguerlange, Nathalie, Broshear, Jackson, Graepel, Thore, Hassabis, Demis

论文摘要

人工智能(AI)和机器学习的快速进步已经在各种团队和个人运动中开放了前所未有的分析可能性,包括棒球,篮球和网球。最近,由于专业团队的数据收集,计算能力的提高以及机器学习的进步,AI技术已应用于足球,其目的是更好地应对分析个人球员和协调团队行为的新科学挑战。与预测性和规范性足球分析相关的研究挑战需要在统计学习,游戏理论和计算机视觉的交集中进行新的发展和进步。在本文中,我们提供了一个总体观点,强调了这些领域的组合,特别是如何构成AI研究的独特缩影,同时为未来几年为专业团队,观众和广播公司提供互惠互利。我们说明,这种双重性使足球分析不仅改变了足球本身,而且还因为该领域对AI领域的意义,这使足球分析成为了巨大价值的游戏规则改变者。我们通过结合上述领域来回顾最新的分析,并体现了启用的分析类型,包括使用预测模型的反事实分析的说明性示例,以及游戏理论分析的惩罚踢与玩家属性的统计学习的结合。最后,我们通过强调设想的下游影响,包括扩展到其他运动(真实和虚拟)的可能性。

The rapid progress in artificial intelligence (AI) and machine learning has opened unprecedented analytics possibilities in various team and individual sports, including baseball, basketball, and tennis. More recently, AI techniques have been applied to football, due to a huge increase in data collection by professional teams, increased computational power, and advances in machine learning, with the goal of better addressing new scientific challenges involved in the analysis of both individual players' and coordinated teams' behaviors. The research challenges associated with predictive and prescriptive football analytics require new developments and progress at the intersection of statistical learning, game theory, and computer vision. In this paper, we provide an overarching perspective highlighting how the combination of these fields, in particular, forms a unique microcosm for AI research, while offering mutual benefits for professional teams, spectators, and broadcasters in the years to come. We illustrate that this duality makes football analytics a game changer of tremendous value, in terms of not only changing the game of football itself, but also in terms of what this domain can mean for the field of AI. We review the state-of-the-art and exemplify the types of analysis enabled by combining the aforementioned fields, including illustrative examples of counterfactual analysis using predictive models, and the combination of game-theoretic analysis of penalty kicks with statistical learning of player attributes. We conclude by highlighting envisioned downstream impacts, including possibilities for extensions to other sports (real and virtual).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源