论文标题
非定向CFT $ _2 $中的通用动力学
Universal Dynamics in Non-Orientable CFT$_2$
论文作者
论文摘要
在不可定向的Riemann表面上定义的二维形成性场理论(CFTS)遵守与可定向情况类似的条件。在真实投影平面上的两点函数$ \ mathbb {rp}^2 $以及klein瓶$ \ mathbb {k k}^2 $上的分区功能,我们在原始函数的两点函数上重新审视这些条件的非理性理论$ c> 1 $。使用Virasoro融合和模块化内核的非理性版本,我们为在大型的共形维度下为不可取向的CFT数据提供了通用表达式,假设标量原始频谱存在差距。特别是,我们在有限的中心收费处得出渐近公式,以$ c_ {llh} \timesγ_{h} $的OPE系数和$ \ mathbb {rp {rp}^2 $单点的功能正常化,以及对较重的scallose and equifter necive and scalife and equarties necive nepare and scalife and equarties and equarties and equift and scalare的范围(或者) $γ_H^2 $)。我们讨论结果的重力解释。
Two-dimensional conformal field theories (CFTs) defined on non-orientable Riemann surfaces obey consistency Cardy conditions analogous to those in the orientable case. We revisit those conditions for irrational theories with central charge $c>1$ in the context of two-point functions of primaries on the Real Projective plane $\mathbb{RP}^2$ and the partition function on the Klein bottle $\mathbb{K}^2$. Using the irrational versions of the Virasoro fusion and modular kernels we derive universal expressions for the non-orientable CFT data at large conformal dimension, assuming a gap in the spectrum of scalar primaries. In particular, we derive asymptotic formulas at finite central charge for the averaged Light-Light-Heavy product $C_{LLH}\timesΓ_{H}$ of OPE coefficients with the $\mathbb{RP}^2$ one-point function normalizations, as well as for the parity-weighted density of heavy scalar primaries (or equivalently the density of heavy $Γ_H^2$). We discuss the gravitational interpretation of the results.