论文标题

节点相似性保存图形卷积网络

Node Similarity Preserving Graph Convolutional Networks

论文作者

Jin, Wei, Derr, Tyler, Wang, Yiqi, Ma, Yao, Liu, Zitao, Tang, Jiliang

论文摘要

图形神经网络(GNN)由于在图形表示学习方面的强大能力,在各种现实世界应用中取得了巨大的成功。 GNNS通过在节点社区中汇总和转换信息来探索图形结构和节点特征。但是,通过理论和经验分析,我们揭示了GNN的聚集过程倾向于破坏原始特征空间中的节点相似性。在许多情况下,节点相似性起着至关重要的作用。因此,它激发了提出的框架SIMP-GCN,该框架可以在利用图形结构时有效地保留节点相似性。具体而言,为了平衡图形结构和节点特征的信息,我们提出了一个特征相似性,以保留聚合,该功能可自适应地整合图形结构和节点特征。此外,我们采用自我监督的学习来明确捕获节点之间的复杂特征相似性和相似性关系。我们验证了SIMP-GCN在七个基准数据集中的有效性,包括三个分类和四个脱符图。结果表明,SIMP-GCN优于代表性基准。进一步的探测显示了拟议框架的各种优势。 SIMP-GCN的实现可在\ url {https://github.com/chandlerbang/simp-gcn}上获得。

Graph Neural Networks (GNNs) have achieved tremendous success in various real-world applications due to their strong ability in graph representation learning. GNNs explore the graph structure and node features by aggregating and transforming information within node neighborhoods. However, through theoretical and empirical analysis, we reveal that the aggregation process of GNNs tends to destroy node similarity in the original feature space. There are many scenarios where node similarity plays a crucial role. Thus, it has motivated the proposed framework SimP-GCN that can effectively and efficiently preserve node similarity while exploiting graph structure. Specifically, to balance information from graph structure and node features, we propose a feature similarity preserving aggregation which adaptively integrates graph structure and node features. Furthermore, we employ self-supervised learning to explicitly capture the complex feature similarity and dissimilarity relations between nodes. We validate the effectiveness of SimP-GCN on seven benchmark datasets including three assortative and four disassorative graphs. The results demonstrate that SimP-GCN outperforms representative baselines. Further probe shows various advantages of the proposed framework. The implementation of SimP-GCN is available at \url{https://github.com/ChandlerBang/SimP-GCN}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源